Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

29x^{2}-22x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 29\left(-3\right)}}{2\times 29}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 29 for a, -22 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 29\left(-3\right)}}{2\times 29}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-116\left(-3\right)}}{2\times 29}
Multiply -4 times 29.
x=\frac{-\left(-22\right)±\sqrt{484+348}}{2\times 29}
Multiply -116 times -3.
x=\frac{-\left(-22\right)±\sqrt{832}}{2\times 29}
Add 484 to 348.
x=\frac{-\left(-22\right)±8\sqrt{13}}{2\times 29}
Take the square root of 832.
x=\frac{22±8\sqrt{13}}{2\times 29}
The opposite of -22 is 22.
x=\frac{22±8\sqrt{13}}{58}
Multiply 2 times 29.
x=\frac{8\sqrt{13}+22}{58}
Now solve the equation x=\frac{22±8\sqrt{13}}{58} when ± is plus. Add 22 to 8\sqrt{13}.
x=\frac{4\sqrt{13}+11}{29}
Divide 22+8\sqrt{13} by 58.
x=\frac{22-8\sqrt{13}}{58}
Now solve the equation x=\frac{22±8\sqrt{13}}{58} when ± is minus. Subtract 8\sqrt{13} from 22.
x=\frac{11-4\sqrt{13}}{29}
Divide 22-8\sqrt{13} by 58.
x=\frac{4\sqrt{13}+11}{29} x=\frac{11-4\sqrt{13}}{29}
The equation is now solved.
29x^{2}-22x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
29x^{2}-22x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
29x^{2}-22x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
29x^{2}-22x=3
Subtract -3 from 0.
\frac{29x^{2}-22x}{29}=\frac{3}{29}
Divide both sides by 29.
x^{2}-\frac{22}{29}x=\frac{3}{29}
Dividing by 29 undoes the multiplication by 29.
x^{2}-\frac{22}{29}x+\left(-\frac{11}{29}\right)^{2}=\frac{3}{29}+\left(-\frac{11}{29}\right)^{2}
Divide -\frac{22}{29}, the coefficient of the x term, by 2 to get -\frac{11}{29}. Then add the square of -\frac{11}{29} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{22}{29}x+\frac{121}{841}=\frac{3}{29}+\frac{121}{841}
Square -\frac{11}{29} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{22}{29}x+\frac{121}{841}=\frac{208}{841}
Add \frac{3}{29} to \frac{121}{841} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{29}\right)^{2}=\frac{208}{841}
Factor x^{2}-\frac{22}{29}x+\frac{121}{841}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{29}\right)^{2}}=\sqrt{\frac{208}{841}}
Take the square root of both sides of the equation.
x-\frac{11}{29}=\frac{4\sqrt{13}}{29} x-\frac{11}{29}=-\frac{4\sqrt{13}}{29}
Simplify.
x=\frac{4\sqrt{13}+11}{29} x=\frac{11-4\sqrt{13}}{29}
Add \frac{11}{29} to both sides of the equation.
x ^ 2 -\frac{22}{29}x -\frac{3}{29} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 29
r + s = \frac{22}{29} rs = -\frac{3}{29}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{11}{29} - u s = \frac{11}{29} + u
Two numbers r and s sum up to \frac{22}{29} exactly when the average of the two numbers is \frac{1}{2}*\frac{22}{29} = \frac{11}{29}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{11}{29} - u) (\frac{11}{29} + u) = -\frac{3}{29}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{29}
\frac{121}{841} - u^2 = -\frac{3}{29}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{29}-\frac{121}{841} = -\frac{208}{841}
Simplify the expression by subtracting \frac{121}{841} on both sides
u^2 = \frac{208}{841} u = \pm\sqrt{\frac{208}{841}} = \pm \frac{\sqrt{208}}{29}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{11}{29} - \frac{\sqrt{208}}{29} = -0.118 s = \frac{11}{29} + \frac{\sqrt{208}}{29} = 0.877
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.