Evaluate
\frac{29}{21}\approx 1.380952381
Factor
\frac{29}{3 \cdot 7} = 1\frac{8}{21} = 1.380952380952381
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)29}\\\end{array}
Use the 1^{st} digit 2 from dividend 29
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)29}\\\end{array}
Since 2 is less than 21, use the next digit 9 from dividend 29 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)29}\\\end{array}
Use the 2^{nd} digit 9 from dividend 29
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)29}\\\phantom{21)}\underline{\phantom{}21\phantom{}}\\\phantom{21)9}8\\\end{array}
Find closest multiple of 21 to 29. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 29 to get reminder 8. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }8
Since 8 is less than 21, stop the division. The reminder is 8. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}