Solve for x (complex solution)
x=\frac{1885+i\times 10\sqrt{1073}}{153}\approx 12.320261438+2.140959393i
x=\frac{-i\times 10\sqrt{1073}+1885}{153}\approx 12.320261438-2.140959393i
Graph
Share
Copied to clipboard
7.65x^{2}-188.5x+1225.25=29
Swap sides so that all variable terms are on the left hand side.
7.65x^{2}-188.5x+1225.25-29=0
Subtract 29 from both sides.
7.65x^{2}-188.5x+1196.25=0
Subtract 29 from 1225.25 to get 1196.25.
x=\frac{-\left(-188.5\right)±\sqrt{\left(-188.5\right)^{2}-4\times 7.65\times 1196.25}}{2\times 7.65}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7.65 for a, -188.5 for b, and 1196.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-188.5\right)±\sqrt{35532.25-4\times 7.65\times 1196.25}}{2\times 7.65}
Square -188.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-188.5\right)±\sqrt{35532.25-30.6\times 1196.25}}{2\times 7.65}
Multiply -4 times 7.65.
x=\frac{-\left(-188.5\right)±\sqrt{\frac{142129-146421}{4}}}{2\times 7.65}
Multiply -30.6 times 1196.25 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-188.5\right)±\sqrt{-1073}}{2\times 7.65}
Add 35532.25 to -36605.25 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-188.5\right)±\sqrt{1073}i}{2\times 7.65}
Take the square root of -1073.
x=\frac{188.5±\sqrt{1073}i}{2\times 7.65}
The opposite of -188.5 is 188.5.
x=\frac{188.5±\sqrt{1073}i}{15.3}
Multiply 2 times 7.65.
x=\frac{188.5+\sqrt{1073}i}{15.3}
Now solve the equation x=\frac{188.5±\sqrt{1073}i}{15.3} when ± is plus. Add 188.5 to i\sqrt{1073}.
x=\frac{1885+10\sqrt{1073}i}{153}
Divide 188.5+i\sqrt{1073} by 15.3 by multiplying 188.5+i\sqrt{1073} by the reciprocal of 15.3.
x=\frac{-\sqrt{1073}i+188.5}{15.3}
Now solve the equation x=\frac{188.5±\sqrt{1073}i}{15.3} when ± is minus. Subtract i\sqrt{1073} from 188.5.
x=\frac{-10\sqrt{1073}i+1885}{153}
Divide 188.5-i\sqrt{1073} by 15.3 by multiplying 188.5-i\sqrt{1073} by the reciprocal of 15.3.
x=\frac{1885+10\sqrt{1073}i}{153} x=\frac{-10\sqrt{1073}i+1885}{153}
The equation is now solved.
7.65x^{2}-188.5x+1225.25=29
Swap sides so that all variable terms are on the left hand side.
7.65x^{2}-188.5x=29-1225.25
Subtract 1225.25 from both sides.
7.65x^{2}-188.5x=-1196.25
Subtract 1225.25 from 29 to get -1196.25.
7.65x^{2}-188.5x=-\frac{4785}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{7.65x^{2}-188.5x}{7.65}=-\frac{\frac{4785}{4}}{7.65}
Divide both sides of the equation by 7.65, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{188.5}{7.65}\right)x=-\frac{\frac{4785}{4}}{7.65}
Dividing by 7.65 undoes the multiplication by 7.65.
x^{2}-\frac{3770}{153}x=-\frac{\frac{4785}{4}}{7.65}
Divide -188.5 by 7.65 by multiplying -188.5 by the reciprocal of 7.65.
x^{2}-\frac{3770}{153}x=-\frac{7975}{51}
Divide -\frac{4785}{4} by 7.65 by multiplying -\frac{4785}{4} by the reciprocal of 7.65.
x^{2}-\frac{3770}{153}x+\left(-\frac{1885}{153}\right)^{2}=-\frac{7975}{51}+\left(-\frac{1885}{153}\right)^{2}
Divide -\frac{3770}{153}, the coefficient of the x term, by 2 to get -\frac{1885}{153}. Then add the square of -\frac{1885}{153} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3770}{153}x+\frac{3553225}{23409}=-\frac{7975}{51}+\frac{3553225}{23409}
Square -\frac{1885}{153} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3770}{153}x+\frac{3553225}{23409}=-\frac{107300}{23409}
Add -\frac{7975}{51} to \frac{3553225}{23409} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1885}{153}\right)^{2}=-\frac{107300}{23409}
Factor x^{2}-\frac{3770}{153}x+\frac{3553225}{23409}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1885}{153}\right)^{2}}=\sqrt{-\frac{107300}{23409}}
Take the square root of both sides of the equation.
x-\frac{1885}{153}=\frac{10\sqrt{1073}i}{153} x-\frac{1885}{153}=-\frac{10\sqrt{1073}i}{153}
Simplify.
x=\frac{1885+10\sqrt{1073}i}{153} x=\frac{-10\sqrt{1073}i+1885}{153}
Add \frac{1885}{153} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}