Solve for I
\left\{\begin{matrix}I=70-\frac{1}{2c}\text{, }&c\neq 0\\I\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{1}{2\left(70-I\right)}\text{, }&I\neq 70\\c\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Share
Copied to clipboard
70cm=\frac{1}{2}m+Icm
Combine 28cm and 42cm to get 70cm.
\frac{1}{2}m+Icm=70cm
Swap sides so that all variable terms are on the left hand side.
Icm=70cm-\frac{1}{2}m
Subtract \frac{1}{2}m from both sides.
cmI=70cm-\frac{m}{2}
The equation is in standard form.
\frac{cmI}{cm}=\frac{70cm-\frac{m}{2}}{cm}
Divide both sides by cm.
I=\frac{70cm-\frac{m}{2}}{cm}
Dividing by cm undoes the multiplication by cm.
I=70-\frac{1}{2c}
Divide -\frac{m}{2}+70mc by cm.
70cm=\frac{1}{2}m+Icm
Combine 28cm and 42cm to get 70cm.
70cm-Icm=\frac{1}{2}m
Subtract Icm from both sides.
-Icm+70cm=\frac{1}{2}m
Reorder the terms.
\left(-Im+70m\right)c=\frac{1}{2}m
Combine all terms containing c.
\left(70m-Im\right)c=\frac{m}{2}
The equation is in standard form.
\frac{\left(70m-Im\right)c}{70m-Im}=\frac{m}{2\left(70m-Im\right)}
Divide both sides by -Im+70m.
c=\frac{m}{2\left(70m-Im\right)}
Dividing by -Im+70m undoes the multiplication by -Im+70m.
c=\frac{1}{2\left(70-I\right)}
Divide \frac{m}{2} by -Im+70m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}