Skip to main content
Solve for y_0
Tick mark Image

Similar Problems from Web Search

Share

289y_{0}^{2}+2y_{0}+1009=1156\times 81
Calculate 34 to the power of 2 and get 1156.
289y_{0}^{2}+2y_{0}+1009=93636
Multiply 1156 and 81 to get 93636.
289y_{0}^{2}+2y_{0}+1009-93636=0
Subtract 93636 from both sides.
289y_{0}^{2}+2y_{0}-92627=0
Subtract 93636 from 1009 to get -92627.
y_{0}=\frac{-2±\sqrt{2^{2}-4\times 289\left(-92627\right)}}{2\times 289}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 289 for a, 2 for b, and -92627 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y_{0}=\frac{-2±\sqrt{4-4\times 289\left(-92627\right)}}{2\times 289}
Square 2.
y_{0}=\frac{-2±\sqrt{4-1156\left(-92627\right)}}{2\times 289}
Multiply -4 times 289.
y_{0}=\frac{-2±\sqrt{4+107076812}}{2\times 289}
Multiply -1156 times -92627.
y_{0}=\frac{-2±\sqrt{107076816}}{2\times 289}
Add 4 to 107076812.
y_{0}=\frac{-2±36\sqrt{82621}}{2\times 289}
Take the square root of 107076816.
y_{0}=\frac{-2±36\sqrt{82621}}{578}
Multiply 2 times 289.
y_{0}=\frac{36\sqrt{82621}-2}{578}
Now solve the equation y_{0}=\frac{-2±36\sqrt{82621}}{578} when ± is plus. Add -2 to 36\sqrt{82621}.
y_{0}=\frac{18\sqrt{82621}-1}{289}
Divide -2+36\sqrt{82621} by 578.
y_{0}=\frac{-36\sqrt{82621}-2}{578}
Now solve the equation y_{0}=\frac{-2±36\sqrt{82621}}{578} when ± is minus. Subtract 36\sqrt{82621} from -2.
y_{0}=\frac{-18\sqrt{82621}-1}{289}
Divide -2-36\sqrt{82621} by 578.
y_{0}=\frac{18\sqrt{82621}-1}{289} y_{0}=\frac{-18\sqrt{82621}-1}{289}
The equation is now solved.
289y_{0}^{2}+2y_{0}+1009=1156\times 81
Calculate 34 to the power of 2 and get 1156.
289y_{0}^{2}+2y_{0}+1009=93636
Multiply 1156 and 81 to get 93636.
289y_{0}^{2}+2y_{0}=93636-1009
Subtract 1009 from both sides.
289y_{0}^{2}+2y_{0}=92627
Subtract 1009 from 93636 to get 92627.
\frac{289y_{0}^{2}+2y_{0}}{289}=\frac{92627}{289}
Divide both sides by 289.
y_{0}^{2}+\frac{2}{289}y_{0}=\frac{92627}{289}
Dividing by 289 undoes the multiplication by 289.
y_{0}^{2}+\frac{2}{289}y_{0}+\left(\frac{1}{289}\right)^{2}=\frac{92627}{289}+\left(\frac{1}{289}\right)^{2}
Divide \frac{2}{289}, the coefficient of the x term, by 2 to get \frac{1}{289}. Then add the square of \frac{1}{289} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y_{0}^{2}+\frac{2}{289}y_{0}+\frac{1}{83521}=\frac{92627}{289}+\frac{1}{83521}
Square \frac{1}{289} by squaring both the numerator and the denominator of the fraction.
y_{0}^{2}+\frac{2}{289}y_{0}+\frac{1}{83521}=\frac{26769204}{83521}
Add \frac{92627}{289} to \frac{1}{83521} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y_{0}+\frac{1}{289}\right)^{2}=\frac{26769204}{83521}
Factor y_{0}^{2}+\frac{2}{289}y_{0}+\frac{1}{83521}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y_{0}+\frac{1}{289}\right)^{2}}=\sqrt{\frac{26769204}{83521}}
Take the square root of both sides of the equation.
y_{0}+\frac{1}{289}=\frac{18\sqrt{82621}}{289} y_{0}+\frac{1}{289}=-\frac{18\sqrt{82621}}{289}
Simplify.
y_{0}=\frac{18\sqrt{82621}-1}{289} y_{0}=\frac{-18\sqrt{82621}-1}{289}
Subtract \frac{1}{289} from both sides of the equation.