Evaluate
\frac{289}{93}\approx 3.107526882
Factor
\frac{17 ^ {2}}{3 \cdot 31} = 3\frac{10}{93} = 3.10752688172043
Share
Copied to clipboard
\begin{array}{l}\phantom{93)}\phantom{1}\\93\overline{)289}\\\end{array}
Use the 1^{st} digit 2 from dividend 289
\begin{array}{l}\phantom{93)}0\phantom{2}\\93\overline{)289}\\\end{array}
Since 2 is less than 93, use the next digit 8 from dividend 289 and add 0 to the quotient
\begin{array}{l}\phantom{93)}0\phantom{3}\\93\overline{)289}\\\end{array}
Use the 2^{nd} digit 8 from dividend 289
\begin{array}{l}\phantom{93)}00\phantom{4}\\93\overline{)289}\\\end{array}
Since 28 is less than 93, use the next digit 9 from dividend 289 and add 0 to the quotient
\begin{array}{l}\phantom{93)}00\phantom{5}\\93\overline{)289}\\\end{array}
Use the 3^{rd} digit 9 from dividend 289
\begin{array}{l}\phantom{93)}003\phantom{6}\\93\overline{)289}\\\phantom{93)}\underline{\phantom{}279\phantom{}}\\\phantom{93)9}10\\\end{array}
Find closest multiple of 93 to 289. We see that 3 \times 93 = 279 is the nearest. Now subtract 279 from 289 to get reminder 10. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }10
Since 10 is less than 93, stop the division. The reminder is 10. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}