Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{289}{4}=x^{2}
Divide both sides by 4.
x^{2}=\frac{289}{4}
Swap sides so that all variable terms are on the left hand side.
x^{2}-\frac{289}{4}=0
Subtract \frac{289}{4} from both sides.
4x^{2}-289=0
Multiply both sides by 4.
\left(2x-17\right)\left(2x+17\right)=0
Consider 4x^{2}-289. Rewrite 4x^{2}-289 as \left(2x\right)^{2}-17^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{17}{2} x=-\frac{17}{2}
To find equation solutions, solve 2x-17=0 and 2x+17=0.
\frac{289}{4}=x^{2}
Divide both sides by 4.
x^{2}=\frac{289}{4}
Swap sides so that all variable terms are on the left hand side.
x=\frac{17}{2} x=-\frac{17}{2}
Take the square root of both sides of the equation.
\frac{289}{4}=x^{2}
Divide both sides by 4.
x^{2}=\frac{289}{4}
Swap sides so that all variable terms are on the left hand side.
x^{2}-\frac{289}{4}=0
Subtract \frac{289}{4} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{289}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{289}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{289}{4}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{289}}{2}
Multiply -4 times -\frac{289}{4}.
x=\frac{0±17}{2}
Take the square root of 289.
x=\frac{17}{2}
Now solve the equation x=\frac{0±17}{2} when ± is plus. Divide 17 by 2.
x=-\frac{17}{2}
Now solve the equation x=\frac{0±17}{2} when ± is minus. Divide -17 by 2.
x=\frac{17}{2} x=-\frac{17}{2}
The equation is now solved.