Evaluate
\frac{28885}{101}\approx 285.99009901
Factor
\frac{5 \cdot 53 \cdot 109}{101} = 285\frac{100}{101} = 285.990099009901
Share
Copied to clipboard
\begin{array}{l}\phantom{101)}\phantom{1}\\101\overline{)28885}\\\end{array}
Use the 1^{st} digit 2 from dividend 28885
\begin{array}{l}\phantom{101)}0\phantom{2}\\101\overline{)28885}\\\end{array}
Since 2 is less than 101, use the next digit 8 from dividend 28885 and add 0 to the quotient
\begin{array}{l}\phantom{101)}0\phantom{3}\\101\overline{)28885}\\\end{array}
Use the 2^{nd} digit 8 from dividend 28885
\begin{array}{l}\phantom{101)}00\phantom{4}\\101\overline{)28885}\\\end{array}
Since 28 is less than 101, use the next digit 8 from dividend 28885 and add 0 to the quotient
\begin{array}{l}\phantom{101)}00\phantom{5}\\101\overline{)28885}\\\end{array}
Use the 3^{rd} digit 8 from dividend 28885
\begin{array}{l}\phantom{101)}002\phantom{6}\\101\overline{)28885}\\\phantom{101)}\underline{\phantom{}202\phantom{99}}\\\phantom{101)9}86\\\end{array}
Find closest multiple of 101 to 288. We see that 2 \times 101 = 202 is the nearest. Now subtract 202 from 288 to get reminder 86. Add 2 to quotient.
\begin{array}{l}\phantom{101)}002\phantom{7}\\101\overline{)28885}\\\phantom{101)}\underline{\phantom{}202\phantom{99}}\\\phantom{101)9}868\\\end{array}
Use the 4^{th} digit 8 from dividend 28885
\begin{array}{l}\phantom{101)}0028\phantom{8}\\101\overline{)28885}\\\phantom{101)}\underline{\phantom{}202\phantom{99}}\\\phantom{101)9}868\\\phantom{101)}\underline{\phantom{9}808\phantom{9}}\\\phantom{101)99}60\\\end{array}
Find closest multiple of 101 to 868. We see that 8 \times 101 = 808 is the nearest. Now subtract 808 from 868 to get reminder 60. Add 8 to quotient.
\begin{array}{l}\phantom{101)}0028\phantom{9}\\101\overline{)28885}\\\phantom{101)}\underline{\phantom{}202\phantom{99}}\\\phantom{101)9}868\\\phantom{101)}\underline{\phantom{9}808\phantom{9}}\\\phantom{101)99}605\\\end{array}
Use the 5^{th} digit 5 from dividend 28885
\begin{array}{l}\phantom{101)}00285\phantom{10}\\101\overline{)28885}\\\phantom{101)}\underline{\phantom{}202\phantom{99}}\\\phantom{101)9}868\\\phantom{101)}\underline{\phantom{9}808\phantom{9}}\\\phantom{101)99}605\\\phantom{101)}\underline{\phantom{99}505\phantom{}}\\\phantom{101)99}100\\\end{array}
Find closest multiple of 101 to 605. We see that 5 \times 101 = 505 is the nearest. Now subtract 505 from 605 to get reminder 100. Add 5 to quotient.
\text{Quotient: }285 \text{Reminder: }100
Since 100 is less than 101, stop the division. The reminder is 100. The topmost line 00285 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 285.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}