Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

288x-1152=50+x^{2}-9x
Add 30 and 20 to get 50.
288x-1152-50=x^{2}-9x
Subtract 50 from both sides.
288x-1202=x^{2}-9x
Subtract 50 from -1152 to get -1202.
288x-1202-x^{2}=-9x
Subtract x^{2} from both sides.
288x-1202-x^{2}+9x=0
Add 9x to both sides.
297x-1202-x^{2}=0
Combine 288x and 9x to get 297x.
-x^{2}+297x-1202=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-297±\sqrt{297^{2}-4\left(-1\right)\left(-1202\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 297 for b, and -1202 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-297±\sqrt{88209-4\left(-1\right)\left(-1202\right)}}{2\left(-1\right)}
Square 297.
x=\frac{-297±\sqrt{88209+4\left(-1202\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-297±\sqrt{88209-4808}}{2\left(-1\right)}
Multiply 4 times -1202.
x=\frac{-297±\sqrt{83401}}{2\left(-1\right)}
Add 88209 to -4808.
x=\frac{-297±\sqrt{83401}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{83401}-297}{-2}
Now solve the equation x=\frac{-297±\sqrt{83401}}{-2} when ± is plus. Add -297 to \sqrt{83401}.
x=\frac{297-\sqrt{83401}}{2}
Divide -297+\sqrt{83401} by -2.
x=\frac{-\sqrt{83401}-297}{-2}
Now solve the equation x=\frac{-297±\sqrt{83401}}{-2} when ± is minus. Subtract \sqrt{83401} from -297.
x=\frac{\sqrt{83401}+297}{2}
Divide -297-\sqrt{83401} by -2.
x=\frac{297-\sqrt{83401}}{2} x=\frac{\sqrt{83401}+297}{2}
The equation is now solved.
288x-1152=50+x^{2}-9x
Add 30 and 20 to get 50.
288x-1152-x^{2}=50-9x
Subtract x^{2} from both sides.
288x-1152-x^{2}+9x=50
Add 9x to both sides.
297x-1152-x^{2}=50
Combine 288x and 9x to get 297x.
297x-x^{2}=50+1152
Add 1152 to both sides.
297x-x^{2}=1202
Add 50 and 1152 to get 1202.
-x^{2}+297x=1202
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+297x}{-1}=\frac{1202}{-1}
Divide both sides by -1.
x^{2}+\frac{297}{-1}x=\frac{1202}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-297x=\frac{1202}{-1}
Divide 297 by -1.
x^{2}-297x=-1202
Divide 1202 by -1.
x^{2}-297x+\left(-\frac{297}{2}\right)^{2}=-1202+\left(-\frac{297}{2}\right)^{2}
Divide -297, the coefficient of the x term, by 2 to get -\frac{297}{2}. Then add the square of -\frac{297}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-297x+\frac{88209}{4}=-1202+\frac{88209}{4}
Square -\frac{297}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-297x+\frac{88209}{4}=\frac{83401}{4}
Add -1202 to \frac{88209}{4}.
\left(x-\frac{297}{2}\right)^{2}=\frac{83401}{4}
Factor x^{2}-297x+\frac{88209}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{297}{2}\right)^{2}}=\sqrt{\frac{83401}{4}}
Take the square root of both sides of the equation.
x-\frac{297}{2}=\frac{\sqrt{83401}}{2} x-\frac{297}{2}=-\frac{\sqrt{83401}}{2}
Simplify.
x=\frac{\sqrt{83401}+297}{2} x=\frac{297-\sqrt{83401}}{2}
Add \frac{297}{2} to both sides of the equation.