Evaluate
\frac{48}{5}=9.6
Factor
\frac{2 ^ {4} \cdot 3}{5} = 9\frac{3}{5} = 9.6
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)288}\\\end{array}
Use the 1^{st} digit 2 from dividend 288
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)288}\\\end{array}
Since 2 is less than 30, use the next digit 8 from dividend 288 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)288}\\\end{array}
Use the 2^{nd} digit 8 from dividend 288
\begin{array}{l}\phantom{30)}00\phantom{4}\\30\overline{)288}\\\end{array}
Since 28 is less than 30, use the next digit 8 from dividend 288 and add 0 to the quotient
\begin{array}{l}\phantom{30)}00\phantom{5}\\30\overline{)288}\\\end{array}
Use the 3^{rd} digit 8 from dividend 288
\begin{array}{l}\phantom{30)}009\phantom{6}\\30\overline{)288}\\\phantom{30)}\underline{\phantom{}270\phantom{}}\\\phantom{30)9}18\\\end{array}
Find closest multiple of 30 to 288. We see that 9 \times 30 = 270 is the nearest. Now subtract 270 from 288 to get reminder 18. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }18
Since 18 is less than 30, stop the division. The reminder is 18. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}