Evaluate
186
Factor
2\times 3\times 31
Share
Copied to clipboard
\begin{array}{l}\phantom{1538)}\phantom{1}\\1538\overline{)286068}\\\end{array}
Use the 1^{st} digit 2 from dividend 286068
\begin{array}{l}\phantom{1538)}0\phantom{2}\\1538\overline{)286068}\\\end{array}
Since 2 is less than 1538, use the next digit 8 from dividend 286068 and add 0 to the quotient
\begin{array}{l}\phantom{1538)}0\phantom{3}\\1538\overline{)286068}\\\end{array}
Use the 2^{nd} digit 8 from dividend 286068
\begin{array}{l}\phantom{1538)}00\phantom{4}\\1538\overline{)286068}\\\end{array}
Since 28 is less than 1538, use the next digit 6 from dividend 286068 and add 0 to the quotient
\begin{array}{l}\phantom{1538)}00\phantom{5}\\1538\overline{)286068}\\\end{array}
Use the 3^{rd} digit 6 from dividend 286068
\begin{array}{l}\phantom{1538)}000\phantom{6}\\1538\overline{)286068}\\\end{array}
Since 286 is less than 1538, use the next digit 0 from dividend 286068 and add 0 to the quotient
\begin{array}{l}\phantom{1538)}000\phantom{7}\\1538\overline{)286068}\\\end{array}
Use the 4^{th} digit 0 from dividend 286068
\begin{array}{l}\phantom{1538)}0001\phantom{8}\\1538\overline{)286068}\\\phantom{1538)}\underline{\phantom{}1538\phantom{99}}\\\phantom{1538)}1322\\\end{array}
Find closest multiple of 1538 to 2860. We see that 1 \times 1538 = 1538 is the nearest. Now subtract 1538 from 2860 to get reminder 1322. Add 1 to quotient.
\begin{array}{l}\phantom{1538)}0001\phantom{9}\\1538\overline{)286068}\\\phantom{1538)}\underline{\phantom{}1538\phantom{99}}\\\phantom{1538)}13226\\\end{array}
Use the 5^{th} digit 6 from dividend 286068
\begin{array}{l}\phantom{1538)}00018\phantom{10}\\1538\overline{)286068}\\\phantom{1538)}\underline{\phantom{}1538\phantom{99}}\\\phantom{1538)}13226\\\phantom{1538)}\underline{\phantom{}12304\phantom{9}}\\\phantom{1538)99}922\\\end{array}
Find closest multiple of 1538 to 13226. We see that 8 \times 1538 = 12304 is the nearest. Now subtract 12304 from 13226 to get reminder 922. Add 8 to quotient.
\begin{array}{l}\phantom{1538)}00018\phantom{11}\\1538\overline{)286068}\\\phantom{1538)}\underline{\phantom{}1538\phantom{99}}\\\phantom{1538)}13226\\\phantom{1538)}\underline{\phantom{}12304\phantom{9}}\\\phantom{1538)99}9228\\\end{array}
Use the 6^{th} digit 8 from dividend 286068
\begin{array}{l}\phantom{1538)}000186\phantom{12}\\1538\overline{)286068}\\\phantom{1538)}\underline{\phantom{}1538\phantom{99}}\\\phantom{1538)}13226\\\phantom{1538)}\underline{\phantom{}12304\phantom{9}}\\\phantom{1538)99}9228\\\phantom{1538)}\underline{\phantom{99}9228\phantom{}}\\\phantom{1538)999999}0\\\end{array}
Find closest multiple of 1538 to 9228. We see that 6 \times 1538 = 9228 is the nearest. Now subtract 9228 from 9228 to get reminder 0. Add 6 to quotient.
\text{Quotient: }186 \text{Reminder: }0
Since 0 is less than 1538, stop the division. The reminder is 0. The topmost line 000186 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 186.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}