Evaluate
\frac{286}{51}\approx 5.607843137
Factor
\frac{2 \cdot 11 \cdot 13}{3 \cdot 17} = 5\frac{31}{51} = 5.607843137254902
Share
Copied to clipboard
\begin{array}{l}\phantom{51)}\phantom{1}\\51\overline{)286}\\\end{array}
Use the 1^{st} digit 2 from dividend 286
\begin{array}{l}\phantom{51)}0\phantom{2}\\51\overline{)286}\\\end{array}
Since 2 is less than 51, use the next digit 8 from dividend 286 and add 0 to the quotient
\begin{array}{l}\phantom{51)}0\phantom{3}\\51\overline{)286}\\\end{array}
Use the 2^{nd} digit 8 from dividend 286
\begin{array}{l}\phantom{51)}00\phantom{4}\\51\overline{)286}\\\end{array}
Since 28 is less than 51, use the next digit 6 from dividend 286 and add 0 to the quotient
\begin{array}{l}\phantom{51)}00\phantom{5}\\51\overline{)286}\\\end{array}
Use the 3^{rd} digit 6 from dividend 286
\begin{array}{l}\phantom{51)}005\phantom{6}\\51\overline{)286}\\\phantom{51)}\underline{\phantom{}255\phantom{}}\\\phantom{51)9}31\\\end{array}
Find closest multiple of 51 to 286. We see that 5 \times 51 = 255 is the nearest. Now subtract 255 from 286 to get reminder 31. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }31
Since 31 is less than 51, stop the division. The reminder is 31. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}