Evaluate
\frac{285}{64}=4.453125
Factor
\frac{3 \cdot 5 \cdot 19}{2 ^ {6}} = 4\frac{29}{64} = 4.453125
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)285}\\\end{array}
Use the 1^{st} digit 2 from dividend 285
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)285}\\\end{array}
Since 2 is less than 64, use the next digit 8 from dividend 285 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)285}\\\end{array}
Use the 2^{nd} digit 8 from dividend 285
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)285}\\\end{array}
Since 28 is less than 64, use the next digit 5 from dividend 285 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)285}\\\end{array}
Use the 3^{rd} digit 5 from dividend 285
\begin{array}{l}\phantom{64)}004\phantom{6}\\64\overline{)285}\\\phantom{64)}\underline{\phantom{}256\phantom{}}\\\phantom{64)9}29\\\end{array}
Find closest multiple of 64 to 285. We see that 4 \times 64 = 256 is the nearest. Now subtract 256 from 285 to get reminder 29. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }29
Since 29 is less than 64, stop the division. The reminder is 29. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}