Solve for x
x = -\frac{919750}{77} = -11944\frac{62}{77} \approx -11944.805194805
Graph
Share
Copied to clipboard
283\left(\frac{2}{15}+\frac{1}{3}-\frac{7}{4}\times \frac{3}{14}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
283\left(\frac{2}{15}+\frac{5}{15}-\frac{7}{4}\times \frac{3}{14}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Least common multiple of 15 and 3 is 15. Convert \frac{2}{15} and \frac{1}{3} to fractions with denominator 15.
283\left(\frac{2+5}{15}-\frac{7}{4}\times \frac{3}{14}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Since \frac{2}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
283\left(\frac{7}{15}-\frac{7}{4}\times \frac{3}{14}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Add 2 and 5 to get 7.
283\left(\frac{7}{15}-\frac{7\times 3}{4\times 14}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Multiply \frac{7}{4} times \frac{3}{14} by multiplying numerator times numerator and denominator times denominator.
283\left(\frac{7}{15}-\frac{21}{56}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Do the multiplications in the fraction \frac{7\times 3}{4\times 14}.
283\left(\frac{7}{15}-\frac{3}{8}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Reduce the fraction \frac{21}{56} to lowest terms by extracting and canceling out 7.
283\left(\frac{56}{120}-\frac{45}{120}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Least common multiple of 15 and 8 is 120. Convert \frac{7}{15} and \frac{3}{8} to fractions with denominator 120.
283\left(\frac{56-45}{120}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Since \frac{56}{120} and \frac{45}{120} have the same denominator, subtract them by subtracting their numerators.
283\left(\frac{11}{120}+\frac{1}{60}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Subtract 45 from 56 to get 11.
283\left(\frac{11}{120}+\frac{2}{120}\right)=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Least common multiple of 120 and 60 is 120. Convert \frac{11}{120} and \frac{1}{60} to fractions with denominator 120.
283\times \frac{11+2}{120}=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Since \frac{11}{120} and \frac{2}{120} have the same denominator, add them by adding their numerators.
283\times \frac{13}{120}=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Add 11 and 2 to get 13.
\frac{283\times 13}{120}=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Express 283\times \frac{13}{120} as a single fraction.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{\frac{2}{5}-\frac{1}{6}}{2-\frac{1}{3}\times 2}
Multiply 283 and 13 to get 3679.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{\frac{12}{30}-\frac{5}{30}}{2-\frac{1}{3}\times 2}
Least common multiple of 5 and 6 is 30. Convert \frac{2}{5} and \frac{1}{6} to fractions with denominator 30.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{\frac{12-5}{30}}{2-\frac{1}{3}\times 2}
Since \frac{12}{30} and \frac{5}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{\frac{7}{30}}{2-\frac{1}{3}\times 2}
Subtract 5 from 12 to get 7.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{\frac{7}{30}}{2-\frac{2}{3}}
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{\frac{7}{30}}{\frac{6}{3}-\frac{2}{3}}
Convert 2 to fraction \frac{6}{3}.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{\frac{7}{30}}{\frac{6-2}{3}}
Since \frac{6}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{\frac{7}{30}}{\frac{4}{3}}
Subtract 2 from 6 to get 4.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{7}{30}\times \frac{3}{4}
Divide \frac{7}{30} by \frac{4}{3} by multiplying \frac{7}{30} by the reciprocal of \frac{4}{3}.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{7\times 3}{30\times 4}
Multiply \frac{7}{30} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{21}{120}
Do the multiplications in the fraction \frac{7\times 3}{30\times 4}.
\frac{3679}{120}=-\frac{11}{750}x\times \frac{7}{40}
Reduce the fraction \frac{21}{120} to lowest terms by extracting and canceling out 3.
\frac{3679}{120}=\frac{-11\times 7}{750\times 40}x
Multiply -\frac{11}{750} times \frac{7}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{3679}{120}=\frac{-77}{30000}x
Do the multiplications in the fraction \frac{-11\times 7}{750\times 40}.
\frac{3679}{120}=-\frac{77}{30000}x
Fraction \frac{-77}{30000} can be rewritten as -\frac{77}{30000} by extracting the negative sign.
-\frac{77}{30000}x=\frac{3679}{120}
Swap sides so that all variable terms are on the left hand side.
x=\frac{3679}{120}\left(-\frac{30000}{77}\right)
Multiply both sides by -\frac{30000}{77}, the reciprocal of -\frac{77}{30000}.
x=\frac{3679\left(-30000\right)}{120\times 77}
Multiply \frac{3679}{120} times -\frac{30000}{77} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-110370000}{9240}
Do the multiplications in the fraction \frac{3679\left(-30000\right)}{120\times 77}.
x=-\frac{919750}{77}
Reduce the fraction \frac{-110370000}{9240} to lowest terms by extracting and canceling out 120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}