Evaluate
\frac{56}{3}\approx 18.666666667
Factor
\frac{2 ^ {3} \cdot 7}{3} = 18\frac{2}{3} = 18.666666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)2800}\\\end{array}
Use the 1^{st} digit 2 from dividend 2800
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)2800}\\\end{array}
Since 2 is less than 150, use the next digit 8 from dividend 2800 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)2800}\\\end{array}
Use the 2^{nd} digit 8 from dividend 2800
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)2800}\\\end{array}
Since 28 is less than 150, use the next digit 0 from dividend 2800 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)2800}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2800
\begin{array}{l}\phantom{150)}001\phantom{6}\\150\overline{)2800}\\\phantom{150)}\underline{\phantom{}150\phantom{9}}\\\phantom{150)}130\\\end{array}
Find closest multiple of 150 to 280. We see that 1 \times 150 = 150 is the nearest. Now subtract 150 from 280 to get reminder 130. Add 1 to quotient.
\begin{array}{l}\phantom{150)}001\phantom{7}\\150\overline{)2800}\\\phantom{150)}\underline{\phantom{}150\phantom{9}}\\\phantom{150)}1300\\\end{array}
Use the 4^{th} digit 0 from dividend 2800
\begin{array}{l}\phantom{150)}0018\phantom{8}\\150\overline{)2800}\\\phantom{150)}\underline{\phantom{}150\phantom{9}}\\\phantom{150)}1300\\\phantom{150)}\underline{\phantom{}1200\phantom{}}\\\phantom{150)9}100\\\end{array}
Find closest multiple of 150 to 1300. We see that 8 \times 150 = 1200 is the nearest. Now subtract 1200 from 1300 to get reminder 100. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }100
Since 100 is less than 150, stop the division. The reminder is 100. The topmost line 0018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}