Evaluate
\frac{28}{5}=5.6
Factor
\frac{2 ^ {2} \cdot 7}{5} = 5\frac{3}{5} = 5.6
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)280}\\\end{array}
Use the 1^{st} digit 2 from dividend 280
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)280}\\\end{array}
Since 2 is less than 50, use the next digit 8 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)280}\\\end{array}
Use the 2^{nd} digit 8 from dividend 280
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)280}\\\end{array}
Since 28 is less than 50, use the next digit 0 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)280}\\\end{array}
Use the 3^{rd} digit 0 from dividend 280
\begin{array}{l}\phantom{50)}005\phantom{6}\\50\overline{)280}\\\phantom{50)}\underline{\phantom{}250\phantom{}}\\\phantom{50)9}30\\\end{array}
Find closest multiple of 50 to 280. We see that 5 \times 50 = 250 is the nearest. Now subtract 250 from 280 to get reminder 30. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }30
Since 30 is less than 50, stop the division. The reminder is 30. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}