Evaluate
\frac{70}{3}\approx 23.333333333
Factor
\frac{2 \cdot 5 \cdot 7}{3} = 23\frac{1}{3} = 23.333333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)280}\\\end{array}
Use the 1^{st} digit 2 from dividend 280
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)280}\\\end{array}
Since 2 is less than 12, use the next digit 8 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)280}\\\end{array}
Use the 2^{nd} digit 8 from dividend 280
\begin{array}{l}\phantom{12)}02\phantom{4}\\12\overline{)280}\\\phantom{12)}\underline{\phantom{}24\phantom{9}}\\\phantom{12)9}4\\\end{array}
Find closest multiple of 12 to 28. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 28 to get reminder 4. Add 2 to quotient.
\begin{array}{l}\phantom{12)}02\phantom{5}\\12\overline{)280}\\\phantom{12)}\underline{\phantom{}24\phantom{9}}\\\phantom{12)9}40\\\end{array}
Use the 3^{rd} digit 0 from dividend 280
\begin{array}{l}\phantom{12)}023\phantom{6}\\12\overline{)280}\\\phantom{12)}\underline{\phantom{}24\phantom{9}}\\\phantom{12)9}40\\\phantom{12)}\underline{\phantom{9}36\phantom{}}\\\phantom{12)99}4\\\end{array}
Find closest multiple of 12 to 40. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 40 to get reminder 4. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }4
Since 4 is less than 12, stop the division. The reminder is 4. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}