Solve for a
a=27
Share
Copied to clipboard
280=\frac{1}{2}\left(\frac{4}{3}a+4\right)\times 14
Combine a and \frac{1}{3}a to get \frac{4}{3}a.
280=\frac{14}{2}\left(\frac{4}{3}a+4\right)
Multiply \frac{1}{2} and 14 to get \frac{14}{2}.
280=7\left(\frac{4}{3}a+4\right)
Divide 14 by 2 to get 7.
280=7\times \frac{4}{3}a+28
Use the distributive property to multiply 7 by \frac{4}{3}a+4.
280=\frac{7\times 4}{3}a+28
Express 7\times \frac{4}{3} as a single fraction.
280=\frac{28}{3}a+28
Multiply 7 and 4 to get 28.
\frac{28}{3}a+28=280
Swap sides so that all variable terms are on the left hand side.
\frac{28}{3}a=280-28
Subtract 28 from both sides.
\frac{28}{3}a=252
Subtract 28 from 280 to get 252.
a=252\times \frac{3}{28}
Multiply both sides by \frac{3}{28}, the reciprocal of \frac{28}{3}.
a=\frac{252\times 3}{28}
Express 252\times \frac{3}{28} as a single fraction.
a=\frac{756}{28}
Multiply 252 and 3 to get 756.
a=27
Divide 756 by 28 to get 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}