Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=5-28
Subtract 28 from both sides.
2x^{2}=-23
Subtract 28 from 5 to get -23.
x^{2}=-\frac{23}{2}
Divide both sides by 2.
x=\frac{\sqrt{46}i}{2} x=-\frac{\sqrt{46}i}{2}
The equation is now solved.
28+2x^{2}-5=0
Subtract 5 from both sides.
23+2x^{2}=0
Subtract 5 from 28 to get 23.
2x^{2}+23=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 23}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and 23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 23}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\times 23}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{-184}}{2\times 2}
Multiply -8 times 23.
x=\frac{0±2\sqrt{46}i}{2\times 2}
Take the square root of -184.
x=\frac{0±2\sqrt{46}i}{4}
Multiply 2 times 2.
x=\frac{\sqrt{46}i}{2}
Now solve the equation x=\frac{0±2\sqrt{46}i}{4} when ± is plus.
x=-\frac{\sqrt{46}i}{2}
Now solve the equation x=\frac{0±2\sqrt{46}i}{4} when ± is minus.
x=\frac{\sqrt{46}i}{2} x=-\frac{\sqrt{46}i}{2}
The equation is now solved.