Factor
\left(7k-2\right)\left(4k+3\right)
Evaluate
\left(7k-2\right)\left(4k+3\right)
Share
Copied to clipboard
a+b=13 ab=28\left(-6\right)=-168
Factor the expression by grouping. First, the expression needs to be rewritten as 28k^{2}+ak+bk-6. To find a and b, set up a system to be solved.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -168.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
Calculate the sum for each pair.
a=-8 b=21
The solution is the pair that gives sum 13.
\left(28k^{2}-8k\right)+\left(21k-6\right)
Rewrite 28k^{2}+13k-6 as \left(28k^{2}-8k\right)+\left(21k-6\right).
4k\left(7k-2\right)+3\left(7k-2\right)
Factor out 4k in the first and 3 in the second group.
\left(7k-2\right)\left(4k+3\right)
Factor out common term 7k-2 by using distributive property.
28k^{2}+13k-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-13±\sqrt{13^{2}-4\times 28\left(-6\right)}}{2\times 28}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-13±\sqrt{169-4\times 28\left(-6\right)}}{2\times 28}
Square 13.
k=\frac{-13±\sqrt{169-112\left(-6\right)}}{2\times 28}
Multiply -4 times 28.
k=\frac{-13±\sqrt{169+672}}{2\times 28}
Multiply -112 times -6.
k=\frac{-13±\sqrt{841}}{2\times 28}
Add 169 to 672.
k=\frac{-13±29}{2\times 28}
Take the square root of 841.
k=\frac{-13±29}{56}
Multiply 2 times 28.
k=\frac{16}{56}
Now solve the equation k=\frac{-13±29}{56} when ± is plus. Add -13 to 29.
k=\frac{2}{7}
Reduce the fraction \frac{16}{56} to lowest terms by extracting and canceling out 8.
k=-\frac{42}{56}
Now solve the equation k=\frac{-13±29}{56} when ± is minus. Subtract 29 from -13.
k=-\frac{3}{4}
Reduce the fraction \frac{-42}{56} to lowest terms by extracting and canceling out 14.
28k^{2}+13k-6=28\left(k-\frac{2}{7}\right)\left(k-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{7} for x_{1} and -\frac{3}{4} for x_{2}.
28k^{2}+13k-6=28\left(k-\frac{2}{7}\right)\left(k+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
28k^{2}+13k-6=28\times \frac{7k-2}{7}\left(k+\frac{3}{4}\right)
Subtract \frac{2}{7} from k by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
28k^{2}+13k-6=28\times \frac{7k-2}{7}\times \frac{4k+3}{4}
Add \frac{3}{4} to k by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
28k^{2}+13k-6=28\times \frac{\left(7k-2\right)\left(4k+3\right)}{7\times 4}
Multiply \frac{7k-2}{7} times \frac{4k+3}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
28k^{2}+13k-6=28\times \frac{\left(7k-2\right)\left(4k+3\right)}{28}
Multiply 7 times 4.
28k^{2}+13k-6=\left(7k-2\right)\left(4k+3\right)
Cancel out 28, the greatest common factor in 28 and 28.
x ^ 2 +\frac{13}{28}x -\frac{3}{14} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 28
r + s = -\frac{13}{28} rs = -\frac{3}{14}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{13}{56} - u s = -\frac{13}{56} + u
Two numbers r and s sum up to -\frac{13}{28} exactly when the average of the two numbers is \frac{1}{2}*-\frac{13}{28} = -\frac{13}{56}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{13}{56} - u) (-\frac{13}{56} + u) = -\frac{3}{14}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{14}
\frac{169}{3136} - u^2 = -\frac{3}{14}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{14}-\frac{169}{3136} = -\frac{841}{3136}
Simplify the expression by subtracting \frac{169}{3136} on both sides
u^2 = \frac{841}{3136} u = \pm\sqrt{\frac{841}{3136}} = \pm \frac{29}{56}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{13}{56} - \frac{29}{56} = -0.750 s = -\frac{13}{56} + \frac{29}{56} = 0.286
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}