Evaluate
b
Differentiate w.r.t. b
1
Share
Copied to clipboard
28a-35a-23b+45b-\left(21b-a\right)+6a
To find the opposite of 35a+23b, find the opposite of each term.
-7a-23b+45b-\left(21b-a\right)+6a
Combine 28a and -35a to get -7a.
-7a+22b-\left(21b-a\right)+6a
Combine -23b and 45b to get 22b.
-7a+22b-21b-\left(-a\right)+6a
To find the opposite of 21b-a, find the opposite of each term.
-7a+22b-21b+a+6a
The opposite of -a is a.
-7a+b+a+6a
Combine 22b and -21b to get b.
-6a+b+6a
Combine -7a and a to get -6a.
b
Combine -6a and 6a to get 0.
\frac{\mathrm{d}}{\mathrm{d}b}(28a-35a-23b+45b-\left(21b-a\right)+6a)
To find the opposite of 35a+23b, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}b}(-7a-23b+45b-\left(21b-a\right)+6a)
Combine 28a and -35a to get -7a.
\frac{\mathrm{d}}{\mathrm{d}b}(-7a+22b-\left(21b-a\right)+6a)
Combine -23b and 45b to get 22b.
\frac{\mathrm{d}}{\mathrm{d}b}(-7a+22b-21b-\left(-a\right)+6a)
To find the opposite of 21b-a, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}b}(-7a+22b-21b+a+6a)
The opposite of -a is a.
\frac{\mathrm{d}}{\mathrm{d}b}(-7a+b+a+6a)
Combine 22b and -21b to get b.
\frac{\mathrm{d}}{\mathrm{d}b}(-6a+b+6a)
Combine -7a and a to get -6a.
\frac{\mathrm{d}}{\mathrm{d}b}(b)
Combine -6a and 6a to get 0.
b^{1-1}
The derivative of ax^{n} is nax^{n-1}.
b^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}