Solve for x
x = -\frac{165}{28} = -5\frac{25}{28} \approx -5.892857143
x=9
Graph
Share
Copied to clipboard
a+b=-87 ab=28\left(-1485\right)=-41580
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 28x^{2}+ax+bx-1485. To find a and b, set up a system to be solved.
1,-41580 2,-20790 3,-13860 4,-10395 5,-8316 6,-6930 7,-5940 9,-4620 10,-4158 11,-3780 12,-3465 14,-2970 15,-2772 18,-2310 20,-2079 21,-1980 22,-1890 27,-1540 28,-1485 30,-1386 33,-1260 35,-1188 36,-1155 42,-990 44,-945 45,-924 54,-770 55,-756 60,-693 63,-660 66,-630 70,-594 77,-540 84,-495 90,-462 99,-420 105,-396 108,-385 110,-378 126,-330 132,-315 135,-308 140,-297 154,-270 165,-252 180,-231 189,-220 198,-210
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -41580.
1-41580=-41579 2-20790=-20788 3-13860=-13857 4-10395=-10391 5-8316=-8311 6-6930=-6924 7-5940=-5933 9-4620=-4611 10-4158=-4148 11-3780=-3769 12-3465=-3453 14-2970=-2956 15-2772=-2757 18-2310=-2292 20-2079=-2059 21-1980=-1959 22-1890=-1868 27-1540=-1513 28-1485=-1457 30-1386=-1356 33-1260=-1227 35-1188=-1153 36-1155=-1119 42-990=-948 44-945=-901 45-924=-879 54-770=-716 55-756=-701 60-693=-633 63-660=-597 66-630=-564 70-594=-524 77-540=-463 84-495=-411 90-462=-372 99-420=-321 105-396=-291 108-385=-277 110-378=-268 126-330=-204 132-315=-183 135-308=-173 140-297=-157 154-270=-116 165-252=-87 180-231=-51 189-220=-31 198-210=-12
Calculate the sum for each pair.
a=-252 b=165
The solution is the pair that gives sum -87.
\left(28x^{2}-252x\right)+\left(165x-1485\right)
Rewrite 28x^{2}-87x-1485 as \left(28x^{2}-252x\right)+\left(165x-1485\right).
28x\left(x-9\right)+165\left(x-9\right)
Factor out 28x in the first and 165 in the second group.
\left(x-9\right)\left(28x+165\right)
Factor out common term x-9 by using distributive property.
x=9 x=-\frac{165}{28}
To find equation solutions, solve x-9=0 and 28x+165=0.
28x^{2}-87x-1485=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-87\right)±\sqrt{\left(-87\right)^{2}-4\times 28\left(-1485\right)}}{2\times 28}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 28 for a, -87 for b, and -1485 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-87\right)±\sqrt{7569-4\times 28\left(-1485\right)}}{2\times 28}
Square -87.
x=\frac{-\left(-87\right)±\sqrt{7569-112\left(-1485\right)}}{2\times 28}
Multiply -4 times 28.
x=\frac{-\left(-87\right)±\sqrt{7569+166320}}{2\times 28}
Multiply -112 times -1485.
x=\frac{-\left(-87\right)±\sqrt{173889}}{2\times 28}
Add 7569 to 166320.
x=\frac{-\left(-87\right)±417}{2\times 28}
Take the square root of 173889.
x=\frac{87±417}{2\times 28}
The opposite of -87 is 87.
x=\frac{87±417}{56}
Multiply 2 times 28.
x=\frac{504}{56}
Now solve the equation x=\frac{87±417}{56} when ± is plus. Add 87 to 417.
x=9
Divide 504 by 56.
x=-\frac{330}{56}
Now solve the equation x=\frac{87±417}{56} when ± is minus. Subtract 417 from 87.
x=-\frac{165}{28}
Reduce the fraction \frac{-330}{56} to lowest terms by extracting and canceling out 2.
x=9 x=-\frac{165}{28}
The equation is now solved.
28x^{2}-87x-1485=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
28x^{2}-87x-1485-\left(-1485\right)=-\left(-1485\right)
Add 1485 to both sides of the equation.
28x^{2}-87x=-\left(-1485\right)
Subtracting -1485 from itself leaves 0.
28x^{2}-87x=1485
Subtract -1485 from 0.
\frac{28x^{2}-87x}{28}=\frac{1485}{28}
Divide both sides by 28.
x^{2}-\frac{87}{28}x=\frac{1485}{28}
Dividing by 28 undoes the multiplication by 28.
x^{2}-\frac{87}{28}x+\left(-\frac{87}{56}\right)^{2}=\frac{1485}{28}+\left(-\frac{87}{56}\right)^{2}
Divide -\frac{87}{28}, the coefficient of the x term, by 2 to get -\frac{87}{56}. Then add the square of -\frac{87}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{87}{28}x+\frac{7569}{3136}=\frac{1485}{28}+\frac{7569}{3136}
Square -\frac{87}{56} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{87}{28}x+\frac{7569}{3136}=\frac{173889}{3136}
Add \frac{1485}{28} to \frac{7569}{3136} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{87}{56}\right)^{2}=\frac{173889}{3136}
Factor x^{2}-\frac{87}{28}x+\frac{7569}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{87}{56}\right)^{2}}=\sqrt{\frac{173889}{3136}}
Take the square root of both sides of the equation.
x-\frac{87}{56}=\frac{417}{56} x-\frac{87}{56}=-\frac{417}{56}
Simplify.
x=9 x=-\frac{165}{28}
Add \frac{87}{56} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}