Solve for x
x=\frac{\sqrt{161}}{56}+\frac{1}{8}\approx 0.351581742
x=-\frac{\sqrt{161}}{56}+\frac{1}{8}\approx -0.101581742
Graph
Share
Copied to clipboard
28x^{2}-7x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 28\left(-1\right)}}{2\times 28}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 28 for a, -7 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 28\left(-1\right)}}{2\times 28}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-112\left(-1\right)}}{2\times 28}
Multiply -4 times 28.
x=\frac{-\left(-7\right)±\sqrt{49+112}}{2\times 28}
Multiply -112 times -1.
x=\frac{-\left(-7\right)±\sqrt{161}}{2\times 28}
Add 49 to 112.
x=\frac{7±\sqrt{161}}{2\times 28}
The opposite of -7 is 7.
x=\frac{7±\sqrt{161}}{56}
Multiply 2 times 28.
x=\frac{\sqrt{161}+7}{56}
Now solve the equation x=\frac{7±\sqrt{161}}{56} when ± is plus. Add 7 to \sqrt{161}.
x=\frac{\sqrt{161}}{56}+\frac{1}{8}
Divide 7+\sqrt{161} by 56.
x=\frac{7-\sqrt{161}}{56}
Now solve the equation x=\frac{7±\sqrt{161}}{56} when ± is minus. Subtract \sqrt{161} from 7.
x=-\frac{\sqrt{161}}{56}+\frac{1}{8}
Divide 7-\sqrt{161} by 56.
x=\frac{\sqrt{161}}{56}+\frac{1}{8} x=-\frac{\sqrt{161}}{56}+\frac{1}{8}
The equation is now solved.
28x^{2}-7x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
28x^{2}-7x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
28x^{2}-7x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
28x^{2}-7x=1
Subtract -1 from 0.
\frac{28x^{2}-7x}{28}=\frac{1}{28}
Divide both sides by 28.
x^{2}+\left(-\frac{7}{28}\right)x=\frac{1}{28}
Dividing by 28 undoes the multiplication by 28.
x^{2}-\frac{1}{4}x=\frac{1}{28}
Reduce the fraction \frac{-7}{28} to lowest terms by extracting and canceling out 7.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{1}{28}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{1}{28}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{23}{448}
Add \frac{1}{28} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=\frac{23}{448}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{23}{448}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{\sqrt{161}}{56} x-\frac{1}{8}=-\frac{\sqrt{161}}{56}
Simplify.
x=\frac{\sqrt{161}}{56}+\frac{1}{8} x=-\frac{\sqrt{161}}{56}+\frac{1}{8}
Add \frac{1}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}