Evaluate
\frac{227}{10}=22.7
Factor
\frac{227}{2 \cdot 5} = 22\frac{7}{10} = 22.7
Quiz
Arithmetic
5 problems similar to:
28 \frac { 4 } { 5 } - 3 \frac { 7 } { 10 } - 2 \frac { 4 } { 10 }
Share
Copied to clipboard
\frac{140+4}{5}-\frac{3\times 10+7}{10}-\frac{2\times 10+4}{10}
Multiply 28 and 5 to get 140.
\frac{144}{5}-\frac{3\times 10+7}{10}-\frac{2\times 10+4}{10}
Add 140 and 4 to get 144.
\frac{144}{5}-\frac{30+7}{10}-\frac{2\times 10+4}{10}
Multiply 3 and 10 to get 30.
\frac{144}{5}-\frac{37}{10}-\frac{2\times 10+4}{10}
Add 30 and 7 to get 37.
\frac{288}{10}-\frac{37}{10}-\frac{2\times 10+4}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{144}{5} and \frac{37}{10} to fractions with denominator 10.
\frac{288-37}{10}-\frac{2\times 10+4}{10}
Since \frac{288}{10} and \frac{37}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{251}{10}-\frac{2\times 10+4}{10}
Subtract 37 from 288 to get 251.
\frac{251}{10}-\frac{20+4}{10}
Multiply 2 and 10 to get 20.
\frac{251}{10}-\frac{24}{10}
Add 20 and 4 to get 24.
\frac{251-24}{10}
Since \frac{251}{10} and \frac{24}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{227}{10}
Subtract 24 from 251 to get 227.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}