Evaluate
\frac{14}{9}\approx 1.555555556
Factor
\frac{2 \cdot 7}{3 ^ {2}} = 1\frac{5}{9} = 1.5555555555555556
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)28}\\\end{array}
Use the 1^{st} digit 2 from dividend 28
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)28}\\\end{array}
Since 2 is less than 18, use the next digit 8 from dividend 28 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)28}\\\end{array}
Use the 2^{nd} digit 8 from dividend 28
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)28}\\\phantom{18)}\underline{\phantom{}18\phantom{}}\\\phantom{18)}10\\\end{array}
Find closest multiple of 18 to 28. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 28 to get reminder 10. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }10
Since 10 is less than 18, stop the division. The reminder is 10. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}