Evaluate
\frac{28}{17}\approx 1.647058824
Factor
\frac{2 ^ {2} \cdot 7}{17} = 1\frac{11}{17} = 1.6470588235294117
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)28}\\\end{array}
Use the 1^{st} digit 2 from dividend 28
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)28}\\\end{array}
Since 2 is less than 17, use the next digit 8 from dividend 28 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)28}\\\end{array}
Use the 2^{nd} digit 8 from dividend 28
\begin{array}{l}\phantom{17)}01\phantom{4}\\17\overline{)28}\\\phantom{17)}\underline{\phantom{}17\phantom{}}\\\phantom{17)}11\\\end{array}
Find closest multiple of 17 to 28. We see that 1 \times 17 = 17 is the nearest. Now subtract 17 from 28 to get reminder 11. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }11
Since 11 is less than 17, stop the division. The reminder is 11. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}