Solve for n_0
n_{0}=\frac{x}{5}-\frac{3y}{28}+\frac{4999}{70}
Solve for x
x=\frac{15y}{28}+5n_{0}-\frac{4999}{14}
Graph
Share
Copied to clipboard
140n_{0}-28x+15y=9998
Use the distributive property to multiply 28 by 5n_{0}-x.
140n_{0}+15y=9998+28x
Add 28x to both sides.
140n_{0}=9998+28x-15y
Subtract 15y from both sides.
140n_{0}=28x-15y+9998
The equation is in standard form.
\frac{140n_{0}}{140}=\frac{28x-15y+9998}{140}
Divide both sides by 140.
n_{0}=\frac{28x-15y+9998}{140}
Dividing by 140 undoes the multiplication by 140.
n_{0}=\frac{x}{5}-\frac{3y}{28}+\frac{4999}{70}
Divide 9998+28x-15y by 140.
140n_{0}-28x+15y=9998
Use the distributive property to multiply 28 by 5n_{0}-x.
-28x+15y=9998-140n_{0}
Subtract 140n_{0} from both sides.
-28x=9998-140n_{0}-15y
Subtract 15y from both sides.
\frac{-28x}{-28}=\frac{9998-140n_{0}-15y}{-28}
Divide both sides by -28.
x=\frac{9998-140n_{0}-15y}{-28}
Dividing by -28 undoes the multiplication by -28.
x=\frac{15y}{28}+5n_{0}-\frac{4999}{14}
Divide 9998-140n_{0}-15y by -28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}