Evaluate
\frac{93}{10}=9.3
Factor
\frac{3 \cdot 31}{2 \cdot 5} = 9\frac{3}{10} = 9.3
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)279}\\\end{array}
Use the 1^{st} digit 2 from dividend 279
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)279}\\\end{array}
Since 2 is less than 30, use the next digit 7 from dividend 279 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)279}\\\end{array}
Use the 2^{nd} digit 7 from dividend 279
\begin{array}{l}\phantom{30)}00\phantom{4}\\30\overline{)279}\\\end{array}
Since 27 is less than 30, use the next digit 9 from dividend 279 and add 0 to the quotient
\begin{array}{l}\phantom{30)}00\phantom{5}\\30\overline{)279}\\\end{array}
Use the 3^{rd} digit 9 from dividend 279
\begin{array}{l}\phantom{30)}009\phantom{6}\\30\overline{)279}\\\phantom{30)}\underline{\phantom{}270\phantom{}}\\\phantom{30)99}9\\\end{array}
Find closest multiple of 30 to 279. We see that 9 \times 30 = 270 is the nearest. Now subtract 270 from 279 to get reminder 9. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }9
Since 9 is less than 30, stop the division. The reminder is 9. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}