Evaluate
\frac{279}{16}=17.4375
Factor
\frac{3 ^ {2} \cdot 31}{2 ^ {4}} = 17\frac{7}{16} = 17.4375
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)279}\\\end{array}
Use the 1^{st} digit 2 from dividend 279
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)279}\\\end{array}
Since 2 is less than 16, use the next digit 7 from dividend 279 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)279}\\\end{array}
Use the 2^{nd} digit 7 from dividend 279
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)279}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}11\\\end{array}
Find closest multiple of 16 to 27. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 27 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)279}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}119\\\end{array}
Use the 3^{rd} digit 9 from dividend 279
\begin{array}{l}\phantom{16)}017\phantom{6}\\16\overline{)279}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}119\\\phantom{16)}\underline{\phantom{}112\phantom{}}\\\phantom{16)99}7\\\end{array}
Find closest multiple of 16 to 119. We see that 7 \times 16 = 112 is the nearest. Now subtract 112 from 119 to get reminder 7. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }7
Since 7 is less than 16, stop the division. The reminder is 7. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}