Evaluate
23
Factor
23
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)276}\\\end{array}
Use the 1^{st} digit 2 from dividend 276
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)276}\\\end{array}
Since 2 is less than 12, use the next digit 7 from dividend 276 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)276}\\\end{array}
Use the 2^{nd} digit 7 from dividend 276
\begin{array}{l}\phantom{12)}02\phantom{4}\\12\overline{)276}\\\phantom{12)}\underline{\phantom{}24\phantom{9}}\\\phantom{12)9}3\\\end{array}
Find closest multiple of 12 to 27. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 27 to get reminder 3. Add 2 to quotient.
\begin{array}{l}\phantom{12)}02\phantom{5}\\12\overline{)276}\\\phantom{12)}\underline{\phantom{}24\phantom{9}}\\\phantom{12)9}36\\\end{array}
Use the 3^{rd} digit 6 from dividend 276
\begin{array}{l}\phantom{12)}023\phantom{6}\\12\overline{)276}\\\phantom{12)}\underline{\phantom{}24\phantom{9}}\\\phantom{12)9}36\\\phantom{12)}\underline{\phantom{9}36\phantom{}}\\\phantom{12)999}0\\\end{array}
Find closest multiple of 12 to 36. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 36 to get reminder 0. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }0
Since 0 is less than 12, stop the division. The reminder is 0. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}