Evaluate
\frac{6895}{3}\approx 2298.333333333
Factor
\frac{5 \cdot 7 \cdot 197}{3} = 2298\frac{1}{3} = 2298.3333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)27580}\\\end{array}
Use the 1^{st} digit 2 from dividend 27580
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)27580}\\\end{array}
Since 2 is less than 12, use the next digit 7 from dividend 27580 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)27580}\\\end{array}
Use the 2^{nd} digit 7 from dividend 27580
\begin{array}{l}\phantom{12)}02\phantom{4}\\12\overline{)27580}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)9}3\\\end{array}
Find closest multiple of 12 to 27. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 27 to get reminder 3. Add 2 to quotient.
\begin{array}{l}\phantom{12)}02\phantom{5}\\12\overline{)27580}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)9}35\\\end{array}
Use the 3^{rd} digit 5 from dividend 27580
\begin{array}{l}\phantom{12)}022\phantom{6}\\12\overline{)27580}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)9}35\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)9}11\\\end{array}
Find closest multiple of 12 to 35. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 35 to get reminder 11. Add 2 to quotient.
\begin{array}{l}\phantom{12)}022\phantom{7}\\12\overline{)27580}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)9}35\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)9}118\\\end{array}
Use the 4^{th} digit 8 from dividend 27580
\begin{array}{l}\phantom{12)}0229\phantom{8}\\12\overline{)27580}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)9}35\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)9}118\\\phantom{12)}\underline{\phantom{9}108\phantom{9}}\\\phantom{12)99}10\\\end{array}
Find closest multiple of 12 to 118. We see that 9 \times 12 = 108 is the nearest. Now subtract 108 from 118 to get reminder 10. Add 9 to quotient.
\begin{array}{l}\phantom{12)}0229\phantom{9}\\12\overline{)27580}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)9}35\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)9}118\\\phantom{12)}\underline{\phantom{9}108\phantom{9}}\\\phantom{12)99}100\\\end{array}
Use the 5^{th} digit 0 from dividend 27580
\begin{array}{l}\phantom{12)}02298\phantom{10}\\12\overline{)27580}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)9}35\\\phantom{12)}\underline{\phantom{9}24\phantom{99}}\\\phantom{12)9}118\\\phantom{12)}\underline{\phantom{9}108\phantom{9}}\\\phantom{12)99}100\\\phantom{12)}\underline{\phantom{999}96\phantom{}}\\\phantom{12)9999}4\\\end{array}
Find closest multiple of 12 to 100. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 100 to get reminder 4. Add 8 to quotient.
\text{Quotient: }2298 \text{Reminder: }4
Since 4 is less than 12, stop the division. The reminder is 4. The topmost line 02298 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2298.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}