Evaluate
\frac{275}{261}\approx 1.053639847
Factor
\frac{5 ^ {2} \cdot 11}{3 ^ {2} \cdot 29} = 1\frac{14}{261} = 1.053639846743295
Share
Copied to clipboard
\begin{array}{l}\phantom{261)}\phantom{1}\\261\overline{)275}\\\end{array}
Use the 1^{st} digit 2 from dividend 275
\begin{array}{l}\phantom{261)}0\phantom{2}\\261\overline{)275}\\\end{array}
Since 2 is less than 261, use the next digit 7 from dividend 275 and add 0 to the quotient
\begin{array}{l}\phantom{261)}0\phantom{3}\\261\overline{)275}\\\end{array}
Use the 2^{nd} digit 7 from dividend 275
\begin{array}{l}\phantom{261)}00\phantom{4}\\261\overline{)275}\\\end{array}
Since 27 is less than 261, use the next digit 5 from dividend 275 and add 0 to the quotient
\begin{array}{l}\phantom{261)}00\phantom{5}\\261\overline{)275}\\\end{array}
Use the 3^{rd} digit 5 from dividend 275
\begin{array}{l}\phantom{261)}001\phantom{6}\\261\overline{)275}\\\phantom{261)}\underline{\phantom{}261\phantom{}}\\\phantom{261)9}14\\\end{array}
Find closest multiple of 261 to 275. We see that 1 \times 261 = 261 is the nearest. Now subtract 261 from 275 to get reminder 14. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }14
Since 14 is less than 261, stop the division. The reminder is 14. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}