Solve for x
x = \frac{\sqrt{161} + 5}{3} \approx 5.896192513
x=\frac{5-\sqrt{161}}{3}\approx -2.56285918
Graph
Share
Copied to clipboard
-18x^{2}+60x+272=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\left(-18\right)\times 272}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 60 for b, and 272 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-18\right)\times 272}}{2\left(-18\right)}
Square 60.
x=\frac{-60±\sqrt{3600+72\times 272}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-60±\sqrt{3600+19584}}{2\left(-18\right)}
Multiply 72 times 272.
x=\frac{-60±\sqrt{23184}}{2\left(-18\right)}
Add 3600 to 19584.
x=\frac{-60±12\sqrt{161}}{2\left(-18\right)}
Take the square root of 23184.
x=\frac{-60±12\sqrt{161}}{-36}
Multiply 2 times -18.
x=\frac{12\sqrt{161}-60}{-36}
Now solve the equation x=\frac{-60±12\sqrt{161}}{-36} when ± is plus. Add -60 to 12\sqrt{161}.
x=\frac{5-\sqrt{161}}{3}
Divide -60+12\sqrt{161} by -36.
x=\frac{-12\sqrt{161}-60}{-36}
Now solve the equation x=\frac{-60±12\sqrt{161}}{-36} when ± is minus. Subtract 12\sqrt{161} from -60.
x=\frac{\sqrt{161}+5}{3}
Divide -60-12\sqrt{161} by -36.
x=\frac{5-\sqrt{161}}{3} x=\frac{\sqrt{161}+5}{3}
The equation is now solved.
-18x^{2}+60x+272=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-18x^{2}+60x+272-272=-272
Subtract 272 from both sides of the equation.
-18x^{2}+60x=-272
Subtracting 272 from itself leaves 0.
\frac{-18x^{2}+60x}{-18}=-\frac{272}{-18}
Divide both sides by -18.
x^{2}+\frac{60}{-18}x=-\frac{272}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-\frac{10}{3}x=-\frac{272}{-18}
Reduce the fraction \frac{60}{-18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{10}{3}x=\frac{136}{9}
Reduce the fraction \frac{-272}{-18} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=\frac{136}{9}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{136+25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{161}{9}
Add \frac{136}{9} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{3}\right)^{2}=\frac{161}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{161}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{\sqrt{161}}{3} x-\frac{5}{3}=-\frac{\sqrt{161}}{3}
Simplify.
x=\frac{\sqrt{161}+5}{3} x=\frac{5-\sqrt{161}}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}