Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)272}\\\end{array}
Use the 1^{st} digit 2 from dividend 272
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)272}\\\end{array}
Since 2 is less than 17, use the next digit 7 from dividend 272 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)272}\\\end{array}
Use the 2^{nd} digit 7 from dividend 272
\begin{array}{l}\phantom{17)}01\phantom{4}\\17\overline{)272}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)}10\\\end{array}
Find closest multiple of 17 to 27. We see that 1 \times 17 = 17 is the nearest. Now subtract 17 from 27 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{17)}01\phantom{5}\\17\overline{)272}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)}102\\\end{array}
Use the 3^{rd} digit 2 from dividend 272
\begin{array}{l}\phantom{17)}016\phantom{6}\\17\overline{)272}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)}102\\\phantom{17)}\underline{\phantom{}102\phantom{}}\\\phantom{17)999}0\\\end{array}
Find closest multiple of 17 to 102. We see that 6 \times 17 = 102 is the nearest. Now subtract 102 from 102 to get reminder 0. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }0
Since 0 is less than 17, stop the division. The reminder is 0. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}