Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{34)}\phantom{1}\\34\overline{)272}\\\end{array}
Use the 1^{st} digit 2 from dividend 272
\begin{array}{l}\phantom{34)}0\phantom{2}\\34\overline{)272}\\\end{array}
Since 2 is less than 34, use the next digit 7 from dividend 272 and add 0 to the quotient
\begin{array}{l}\phantom{34)}0\phantom{3}\\34\overline{)272}\\\end{array}
Use the 2^{nd} digit 7 from dividend 272
\begin{array}{l}\phantom{34)}00\phantom{4}\\34\overline{)272}\\\end{array}
Since 27 is less than 34, use the next digit 2 from dividend 272 and add 0 to the quotient
\begin{array}{l}\phantom{34)}00\phantom{5}\\34\overline{)272}\\\end{array}
Use the 3^{rd} digit 2 from dividend 272
\begin{array}{l}\phantom{34)}008\phantom{6}\\34\overline{)272}\\\phantom{34)}\underline{\phantom{}272\phantom{}}\\\phantom{34)999}0\\\end{array}
Find closest multiple of 34 to 272. We see that 8 \times 34 = 272 is the nearest. Now subtract 272 from 272 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 34, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}