Solve for x
x=-\frac{7}{2\pi }+9\approx 7.885915398
Graph
Share
Copied to clipboard
270\pi =\frac{15}{2}\left(4\pi x+14\right)
Multiply 2 and 2 to get 4. Multiply 14 and 1 to get 14.
270\pi =\frac{15}{2}\times 4\pi x+\frac{15}{2}\times 14
Use the distributive property to multiply \frac{15}{2} by 4\pi x+14.
270\pi =\frac{15\times 4}{2}\pi x+\frac{15}{2}\times 14
Express \frac{15}{2}\times 4 as a single fraction.
270\pi =\frac{60}{2}\pi x+\frac{15}{2}\times 14
Multiply 15 and 4 to get 60.
270\pi =30\pi x+\frac{15}{2}\times 14
Divide 60 by 2 to get 30.
270\pi =30\pi x+\frac{15\times 14}{2}
Express \frac{15}{2}\times 14 as a single fraction.
270\pi =30\pi x+\frac{210}{2}
Multiply 15 and 14 to get 210.
270\pi =30\pi x+105
Divide 210 by 2 to get 105.
30\pi x+105=270\pi
Swap sides so that all variable terms are on the left hand side.
30\pi x=270\pi -105
Subtract 105 from both sides.
\frac{30\pi x}{30\pi }=\frac{270\pi -105}{30\pi }
Divide both sides by 30\pi .
x=\frac{270\pi -105}{30\pi }
Dividing by 30\pi undoes the multiplication by 30\pi .
x=-\frac{7}{2\pi }+9
Divide 270\pi -105 by 30\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}