Evaluate
\frac{135}{8}=16.875
Factor
\frac{3 ^ {3} \cdot 5}{2 ^ {3}} = 16\frac{7}{8} = 16.875
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)270}\\\end{array}
Use the 1^{st} digit 2 from dividend 270
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)270}\\\end{array}
Since 2 is less than 16, use the next digit 7 from dividend 270 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)270}\\\end{array}
Use the 2^{nd} digit 7 from dividend 270
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)270}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}11\\\end{array}
Find closest multiple of 16 to 27. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 27 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)270}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}110\\\end{array}
Use the 3^{rd} digit 0 from dividend 270
\begin{array}{l}\phantom{16)}016\phantom{6}\\16\overline{)270}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}110\\\phantom{16)}\underline{\phantom{9}96\phantom{}}\\\phantom{16)9}14\\\end{array}
Find closest multiple of 16 to 110. We see that 6 \times 16 = 96 is the nearest. Now subtract 96 from 110 to get reminder 14. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }14
Since 14 is less than 16, stop the division. The reminder is 14. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}