Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

x^{3}\left(27+8y^{6}x^{6}\right)
Factor out x^{3}.
\left(2x^{2}y^{2}+3\right)\left(4x^{4}y^{4}-6x^{2}y^{2}+9\right)
Consider 27+8y^{6}x^{6}. Rewrite 27+8y^{6}x^{6} as \left(2x^{2}y^{2}\right)^{3}+3^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
x^{3}\left(2x^{2}y^{2}+3\right)\left(4x^{4}y^{4}-6x^{2}y^{2}+9\right)
Rewrite the complete factored expression.