Factor
\left(3x-2\right)\left(9x+2\right)
Evaluate
\left(3x-2\right)\left(9x+2\right)
Graph
Share
Copied to clipboard
a+b=-12 ab=27\left(-4\right)=-108
Factor the expression by grouping. First, the expression needs to be rewritten as 27x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -108.
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
Calculate the sum for each pair.
a=-18 b=6
The solution is the pair that gives sum -12.
\left(27x^{2}-18x\right)+\left(6x-4\right)
Rewrite 27x^{2}-12x-4 as \left(27x^{2}-18x\right)+\left(6x-4\right).
9x\left(3x-2\right)+2\left(3x-2\right)
Factor out 9x in the first and 2 in the second group.
\left(3x-2\right)\left(9x+2\right)
Factor out common term 3x-2 by using distributive property.
27x^{2}-12x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 27\left(-4\right)}}{2\times 27}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 27\left(-4\right)}}{2\times 27}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-108\left(-4\right)}}{2\times 27}
Multiply -4 times 27.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2\times 27}
Multiply -108 times -4.
x=\frac{-\left(-12\right)±\sqrt{576}}{2\times 27}
Add 144 to 432.
x=\frac{-\left(-12\right)±24}{2\times 27}
Take the square root of 576.
x=\frac{12±24}{2\times 27}
The opposite of -12 is 12.
x=\frac{12±24}{54}
Multiply 2 times 27.
x=\frac{36}{54}
Now solve the equation x=\frac{12±24}{54} when ± is plus. Add 12 to 24.
x=\frac{2}{3}
Reduce the fraction \frac{36}{54} to lowest terms by extracting and canceling out 18.
x=-\frac{12}{54}
Now solve the equation x=\frac{12±24}{54} when ± is minus. Subtract 24 from 12.
x=-\frac{2}{9}
Reduce the fraction \frac{-12}{54} to lowest terms by extracting and canceling out 6.
27x^{2}-12x-4=27\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{2}{9}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and -\frac{2}{9} for x_{2}.
27x^{2}-12x-4=27\left(x-\frac{2}{3}\right)\left(x+\frac{2}{9}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
27x^{2}-12x-4=27\times \frac{3x-2}{3}\left(x+\frac{2}{9}\right)
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
27x^{2}-12x-4=27\times \frac{3x-2}{3}\times \frac{9x+2}{9}
Add \frac{2}{9} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
27x^{2}-12x-4=27\times \frac{\left(3x-2\right)\left(9x+2\right)}{3\times 9}
Multiply \frac{3x-2}{3} times \frac{9x+2}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
27x^{2}-12x-4=27\times \frac{\left(3x-2\right)\left(9x+2\right)}{27}
Multiply 3 times 9.
27x^{2}-12x-4=\left(3x-2\right)\left(9x+2\right)
Cancel out 27, the greatest common factor in 27 and 27.
x ^ 2 -\frac{4}{9}x -\frac{4}{27} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 27
r + s = \frac{4}{9} rs = -\frac{4}{27}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{2}{9} - u s = \frac{2}{9} + u
Two numbers r and s sum up to \frac{4}{9} exactly when the average of the two numbers is \frac{1}{2}*\frac{4}{9} = \frac{2}{9}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{2}{9} - u) (\frac{2}{9} + u) = -\frac{4}{27}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{4}{27}
\frac{4}{81} - u^2 = -\frac{4}{27}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{4}{27}-\frac{4}{81} = -\frac{16}{81}
Simplify the expression by subtracting \frac{4}{81} on both sides
u^2 = \frac{16}{81} u = \pm\sqrt{\frac{16}{81}} = \pm \frac{4}{9}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{2}{9} - \frac{4}{9} = -0.222 s = \frac{2}{9} + \frac{4}{9} = 0.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}