Solve for m
m=\frac{3n^{2}}{101}+\frac{400}{909}
Solve for n (complex solution)
n=-\frac{\sqrt{2727m-1200}}{9}
n=\frac{\sqrt{2727m-1200}}{9}
Solve for n
n=\frac{\sqrt{2727m-1200}}{9}
n=-\frac{\sqrt{2727m-1200}}{9}\text{, }m\geq \frac{400}{909}
Share
Copied to clipboard
-909m+400=-27n^{2}
Subtract 27n^{2} from both sides. Anything subtracted from zero gives its negation.
-909m=-27n^{2}-400
Subtract 400 from both sides.
\frac{-909m}{-909}=\frac{-27n^{2}-400}{-909}
Divide both sides by -909.
m=\frac{-27n^{2}-400}{-909}
Dividing by -909 undoes the multiplication by -909.
m=\frac{3n^{2}}{101}+\frac{400}{909}
Divide -27n^{2}-400 by -909.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}