Solve for n
n=-\frac{\sqrt{23}i}{3}\approx -0-1.598610508i
n=\frac{\sqrt{23}i}{3}\approx 1.598610508i
Share
Copied to clipboard
27n^{2}+69=0
Subtract 3 from 72 to get 69.
27n^{2}=-69
Subtract 69 from both sides. Anything subtracted from zero gives its negation.
n^{2}=\frac{-69}{27}
Divide both sides by 27.
n^{2}=-\frac{23}{9}
Reduce the fraction \frac{-69}{27} to lowest terms by extracting and canceling out 3.
n=\frac{\sqrt{23}i}{3} n=-\frac{\sqrt{23}i}{3}
The equation is now solved.
27n^{2}+69=0
Subtract 3 from 72 to get 69.
n=\frac{0±\sqrt{0^{2}-4\times 27\times 69}}{2\times 27}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 27 for a, 0 for b, and 69 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 27\times 69}}{2\times 27}
Square 0.
n=\frac{0±\sqrt{-108\times 69}}{2\times 27}
Multiply -4 times 27.
n=\frac{0±\sqrt{-7452}}{2\times 27}
Multiply -108 times 69.
n=\frac{0±18\sqrt{23}i}{2\times 27}
Take the square root of -7452.
n=\frac{0±18\sqrt{23}i}{54}
Multiply 2 times 27.
n=\frac{\sqrt{23}i}{3}
Now solve the equation n=\frac{0±18\sqrt{23}i}{54} when ± is plus.
n=-\frac{\sqrt{23}i}{3}
Now solve the equation n=\frac{0±18\sqrt{23}i}{54} when ± is minus.
n=\frac{\sqrt{23}i}{3} n=-\frac{\sqrt{23}i}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}