Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

27m^{2}=-49
Subtract 49 from both sides. Anything subtracted from zero gives its negation.
m^{2}=-\frac{49}{27}
Divide both sides by 27.
m=\frac{7\sqrt{3}i}{9} m=-\frac{7\sqrt{3}i}{9}
The equation is now solved.
27m^{2}+49=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\times 27\times 49}}{2\times 27}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 27 for a, 0 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times 27\times 49}}{2\times 27}
Square 0.
m=\frac{0±\sqrt{-108\times 49}}{2\times 27}
Multiply -4 times 27.
m=\frac{0±\sqrt{-5292}}{2\times 27}
Multiply -108 times 49.
m=\frac{0±42\sqrt{3}i}{2\times 27}
Take the square root of -5292.
m=\frac{0±42\sqrt{3}i}{54}
Multiply 2 times 27.
m=\frac{7\sqrt{3}i}{9}
Now solve the equation m=\frac{0±42\sqrt{3}i}{54} when ± is plus.
m=-\frac{7\sqrt{3}i}{9}
Now solve the equation m=\frac{0±42\sqrt{3}i}{54} when ± is minus.
m=\frac{7\sqrt{3}i}{9} m=-\frac{7\sqrt{3}i}{9}
The equation is now solved.