Factor
\left(3-5a\right)^{3}
Evaluate
\left(3-5a\right)^{3}
Share
Copied to clipboard
\left(5a-3\right)\left(-25a^{2}+30a-9\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 27 and q divides the leading coefficient -125. One such root is \frac{3}{5}. Factor the polynomial by dividing it by 5a-3.
p+q=30 pq=-25\left(-9\right)=225
Consider -25a^{2}+30a-9. Factor the expression by grouping. First, the expression needs to be rewritten as -25a^{2}+pa+qa-9. To find p and q, set up a system to be solved.
1,225 3,75 5,45 9,25 15,15
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
Calculate the sum for each pair.
p=15 q=15
The solution is the pair that gives sum 30.
\left(-25a^{2}+15a\right)+\left(15a-9\right)
Rewrite -25a^{2}+30a-9 as \left(-25a^{2}+15a\right)+\left(15a-9\right).
-5a\left(5a-3\right)+3\left(5a-3\right)
Factor out -5a in the first and 3 in the second group.
\left(5a-3\right)\left(-5a+3\right)
Factor out common term 5a-3 by using distributive property.
\left(-5a+3\right)\left(5a-3\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}