Solve for x
x=-\frac{1}{9}\approx -0.111111111
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
a+b=-6 ab=27\left(-1\right)=-27
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 27x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,-27 3,-9
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -27.
1-27=-26 3-9=-6
Calculate the sum for each pair.
a=-9 b=3
The solution is the pair that gives sum -6.
\left(27x^{2}-9x\right)+\left(3x-1\right)
Rewrite 27x^{2}-6x-1 as \left(27x^{2}-9x\right)+\left(3x-1\right).
9x\left(3x-1\right)+3x-1
Factor out 9x in 27x^{2}-9x.
\left(3x-1\right)\left(9x+1\right)
Factor out common term 3x-1 by using distributive property.
x=\frac{1}{3} x=-\frac{1}{9}
To find equation solutions, solve 3x-1=0 and 9x+1=0.
27x^{2}-6x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 27\left(-1\right)}}{2\times 27}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 27 for a, -6 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 27\left(-1\right)}}{2\times 27}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-108\left(-1\right)}}{2\times 27}
Multiply -4 times 27.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\times 27}
Multiply -108 times -1.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\times 27}
Add 36 to 108.
x=\frac{-\left(-6\right)±12}{2\times 27}
Take the square root of 144.
x=\frac{6±12}{2\times 27}
The opposite of -6 is 6.
x=\frac{6±12}{54}
Multiply 2 times 27.
x=\frac{18}{54}
Now solve the equation x=\frac{6±12}{54} when ± is plus. Add 6 to 12.
x=\frac{1}{3}
Reduce the fraction \frac{18}{54} to lowest terms by extracting and canceling out 18.
x=-\frac{6}{54}
Now solve the equation x=\frac{6±12}{54} when ± is minus. Subtract 12 from 6.
x=-\frac{1}{9}
Reduce the fraction \frac{-6}{54} to lowest terms by extracting and canceling out 6.
x=\frac{1}{3} x=-\frac{1}{9}
The equation is now solved.
27x^{2}-6x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
27x^{2}-6x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
27x^{2}-6x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
27x^{2}-6x=1
Subtract -1 from 0.
\frac{27x^{2}-6x}{27}=\frac{1}{27}
Divide both sides by 27.
x^{2}+\left(-\frac{6}{27}\right)x=\frac{1}{27}
Dividing by 27 undoes the multiplication by 27.
x^{2}-\frac{2}{9}x=\frac{1}{27}
Reduce the fraction \frac{-6}{27} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{2}{9}x+\left(-\frac{1}{9}\right)^{2}=\frac{1}{27}+\left(-\frac{1}{9}\right)^{2}
Divide -\frac{2}{9}, the coefficient of the x term, by 2 to get -\frac{1}{9}. Then add the square of -\frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{9}x+\frac{1}{81}=\frac{1}{27}+\frac{1}{81}
Square -\frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{9}x+\frac{1}{81}=\frac{4}{81}
Add \frac{1}{27} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{9}\right)^{2}=\frac{4}{81}
Factor x^{2}-\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{9}\right)^{2}}=\sqrt{\frac{4}{81}}
Take the square root of both sides of the equation.
x-\frac{1}{9}=\frac{2}{9} x-\frac{1}{9}=-\frac{2}{9}
Simplify.
x=\frac{1}{3} x=-\frac{1}{9}
Add \frac{1}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}