Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

27x^{2}-66x+27=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\times 27\times 27}}{2\times 27}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-66\right)±\sqrt{4356-4\times 27\times 27}}{2\times 27}
Square -66.
x=\frac{-\left(-66\right)±\sqrt{4356-108\times 27}}{2\times 27}
Multiply -4 times 27.
x=\frac{-\left(-66\right)±\sqrt{4356-2916}}{2\times 27}
Multiply -108 times 27.
x=\frac{-\left(-66\right)±\sqrt{1440}}{2\times 27}
Add 4356 to -2916.
x=\frac{-\left(-66\right)±12\sqrt{10}}{2\times 27}
Take the square root of 1440.
x=\frac{66±12\sqrt{10}}{2\times 27}
The opposite of -66 is 66.
x=\frac{66±12\sqrt{10}}{54}
Multiply 2 times 27.
x=\frac{12\sqrt{10}+66}{54}
Now solve the equation x=\frac{66±12\sqrt{10}}{54} when ± is plus. Add 66 to 12\sqrt{10}.
x=\frac{2\sqrt{10}+11}{9}
Divide 66+12\sqrt{10} by 54.
x=\frac{66-12\sqrt{10}}{54}
Now solve the equation x=\frac{66±12\sqrt{10}}{54} when ± is minus. Subtract 12\sqrt{10} from 66.
x=\frac{11-2\sqrt{10}}{9}
Divide 66-12\sqrt{10} by 54.
27x^{2}-66x+27=27\left(x-\frac{2\sqrt{10}+11}{9}\right)\left(x-\frac{11-2\sqrt{10}}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11+2\sqrt{10}}{9} for x_{1} and \frac{11-2\sqrt{10}}{9} for x_{2}.