Solve for x
x=\frac{\sqrt{5749}-59}{54}\approx 0.311521488
x=\frac{-\sqrt{5749}-59}{54}\approx -2.496706673
Graph
Share
Copied to clipboard
27x^{2}+59x-21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-59±\sqrt{59^{2}-4\times 27\left(-21\right)}}{2\times 27}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 27 for a, 59 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-59±\sqrt{3481-4\times 27\left(-21\right)}}{2\times 27}
Square 59.
x=\frac{-59±\sqrt{3481-108\left(-21\right)}}{2\times 27}
Multiply -4 times 27.
x=\frac{-59±\sqrt{3481+2268}}{2\times 27}
Multiply -108 times -21.
x=\frac{-59±\sqrt{5749}}{2\times 27}
Add 3481 to 2268.
x=\frac{-59±\sqrt{5749}}{54}
Multiply 2 times 27.
x=\frac{\sqrt{5749}-59}{54}
Now solve the equation x=\frac{-59±\sqrt{5749}}{54} when ± is plus. Add -59 to \sqrt{5749}.
x=\frac{-\sqrt{5749}-59}{54}
Now solve the equation x=\frac{-59±\sqrt{5749}}{54} when ± is minus. Subtract \sqrt{5749} from -59.
x=\frac{\sqrt{5749}-59}{54} x=\frac{-\sqrt{5749}-59}{54}
The equation is now solved.
27x^{2}+59x-21=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
27x^{2}+59x-21-\left(-21\right)=-\left(-21\right)
Add 21 to both sides of the equation.
27x^{2}+59x=-\left(-21\right)
Subtracting -21 from itself leaves 0.
27x^{2}+59x=21
Subtract -21 from 0.
\frac{27x^{2}+59x}{27}=\frac{21}{27}
Divide both sides by 27.
x^{2}+\frac{59}{27}x=\frac{21}{27}
Dividing by 27 undoes the multiplication by 27.
x^{2}+\frac{59}{27}x=\frac{7}{9}
Reduce the fraction \frac{21}{27} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{59}{27}x+\left(\frac{59}{54}\right)^{2}=\frac{7}{9}+\left(\frac{59}{54}\right)^{2}
Divide \frac{59}{27}, the coefficient of the x term, by 2 to get \frac{59}{54}. Then add the square of \frac{59}{54} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{59}{27}x+\frac{3481}{2916}=\frac{7}{9}+\frac{3481}{2916}
Square \frac{59}{54} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{59}{27}x+\frac{3481}{2916}=\frac{5749}{2916}
Add \frac{7}{9} to \frac{3481}{2916} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{59}{54}\right)^{2}=\frac{5749}{2916}
Factor x^{2}+\frac{59}{27}x+\frac{3481}{2916}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{59}{54}\right)^{2}}=\sqrt{\frac{5749}{2916}}
Take the square root of both sides of the equation.
x+\frac{59}{54}=\frac{\sqrt{5749}}{54} x+\frac{59}{54}=-\frac{\sqrt{5749}}{54}
Simplify.
x=\frac{\sqrt{5749}-59}{54} x=\frac{-\sqrt{5749}-59}{54}
Subtract \frac{59}{54} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}