Solve for x (complex solution)
x=\frac{-55+\sqrt{5183}i}{54}\approx -1.018518519+1.333204726i
x=\frac{-\sqrt{5183}i-55}{54}\approx -1.018518519-1.333204726i
Graph
Share
Copied to clipboard
27x^{2}+55x+76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-55±\sqrt{55^{2}-4\times 27\times 76}}{2\times 27}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 27 for a, 55 for b, and 76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-55±\sqrt{3025-4\times 27\times 76}}{2\times 27}
Square 55.
x=\frac{-55±\sqrt{3025-108\times 76}}{2\times 27}
Multiply -4 times 27.
x=\frac{-55±\sqrt{3025-8208}}{2\times 27}
Multiply -108 times 76.
x=\frac{-55±\sqrt{-5183}}{2\times 27}
Add 3025 to -8208.
x=\frac{-55±\sqrt{5183}i}{2\times 27}
Take the square root of -5183.
x=\frac{-55±\sqrt{5183}i}{54}
Multiply 2 times 27.
x=\frac{-55+\sqrt{5183}i}{54}
Now solve the equation x=\frac{-55±\sqrt{5183}i}{54} when ± is plus. Add -55 to i\sqrt{5183}.
x=\frac{-\sqrt{5183}i-55}{54}
Now solve the equation x=\frac{-55±\sqrt{5183}i}{54} when ± is minus. Subtract i\sqrt{5183} from -55.
x=\frac{-55+\sqrt{5183}i}{54} x=\frac{-\sqrt{5183}i-55}{54}
The equation is now solved.
27x^{2}+55x+76=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
27x^{2}+55x+76-76=-76
Subtract 76 from both sides of the equation.
27x^{2}+55x=-76
Subtracting 76 from itself leaves 0.
\frac{27x^{2}+55x}{27}=-\frac{76}{27}
Divide both sides by 27.
x^{2}+\frac{55}{27}x=-\frac{76}{27}
Dividing by 27 undoes the multiplication by 27.
x^{2}+\frac{55}{27}x+\left(\frac{55}{54}\right)^{2}=-\frac{76}{27}+\left(\frac{55}{54}\right)^{2}
Divide \frac{55}{27}, the coefficient of the x term, by 2 to get \frac{55}{54}. Then add the square of \frac{55}{54} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{55}{27}x+\frac{3025}{2916}=-\frac{76}{27}+\frac{3025}{2916}
Square \frac{55}{54} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{55}{27}x+\frac{3025}{2916}=-\frac{5183}{2916}
Add -\frac{76}{27} to \frac{3025}{2916} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{55}{54}\right)^{2}=-\frac{5183}{2916}
Factor x^{2}+\frac{55}{27}x+\frac{3025}{2916}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{55}{54}\right)^{2}}=\sqrt{-\frac{5183}{2916}}
Take the square root of both sides of the equation.
x+\frac{55}{54}=\frac{\sqrt{5183}i}{54} x+\frac{55}{54}=-\frac{\sqrt{5183}i}{54}
Simplify.
x=\frac{-55+\sqrt{5183}i}{54} x=\frac{-\sqrt{5183}i-55}{54}
Subtract \frac{55}{54} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}