Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

27x^{2}+5.9x-21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5.9±\sqrt{5.9^{2}-4\times 27\left(-21\right)}}{2\times 27}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 27 for a, 5.9 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5.9±\sqrt{34.81-4\times 27\left(-21\right)}}{2\times 27}
Square 5.9 by squaring both the numerator and the denominator of the fraction.
x=\frac{-5.9±\sqrt{34.81-108\left(-21\right)}}{2\times 27}
Multiply -4 times 27.
x=\frac{-5.9±\sqrt{34.81+2268}}{2\times 27}
Multiply -108 times -21.
x=\frac{-5.9±\sqrt{2302.81}}{2\times 27}
Add 34.81 to 2268.
x=\frac{-5.9±\frac{\sqrt{230281}}{10}}{2\times 27}
Take the square root of 2302.81.
x=\frac{-5.9±\frac{\sqrt{230281}}{10}}{54}
Multiply 2 times 27.
x=\frac{\sqrt{230281}-59}{10\times 54}
Now solve the equation x=\frac{-5.9±\frac{\sqrt{230281}}{10}}{54} when ± is plus. Add -5.9 to \frac{\sqrt{230281}}{10}.
x=\frac{\sqrt{230281}-59}{540}
Divide \frac{-59+\sqrt{230281}}{10} by 54.
x=\frac{-\sqrt{230281}-59}{10\times 54}
Now solve the equation x=\frac{-5.9±\frac{\sqrt{230281}}{10}}{54} when ± is minus. Subtract \frac{\sqrt{230281}}{10} from -5.9.
x=\frac{-\sqrt{230281}-59}{540}
Divide \frac{-59-\sqrt{230281}}{10} by 54.
x=\frac{\sqrt{230281}-59}{540} x=\frac{-\sqrt{230281}-59}{540}
The equation is now solved.
27x^{2}+5.9x-21=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
27x^{2}+5.9x-21-\left(-21\right)=-\left(-21\right)
Add 21 to both sides of the equation.
27x^{2}+5.9x=-\left(-21\right)
Subtracting -21 from itself leaves 0.
27x^{2}+5.9x=21
Subtract -21 from 0.
\frac{27x^{2}+5.9x}{27}=\frac{21}{27}
Divide both sides by 27.
x^{2}+\frac{5.9}{27}x=\frac{21}{27}
Dividing by 27 undoes the multiplication by 27.
x^{2}+\frac{59}{270}x=\frac{21}{27}
Divide 5.9 by 27.
x^{2}+\frac{59}{270}x=\frac{7}{9}
Reduce the fraction \frac{21}{27} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{59}{270}x+\frac{59}{540}^{2}=\frac{7}{9}+\frac{59}{540}^{2}
Divide \frac{59}{270}, the coefficient of the x term, by 2 to get \frac{59}{540}. Then add the square of \frac{59}{540} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{59}{270}x+\frac{3481}{291600}=\frac{7}{9}+\frac{3481}{291600}
Square \frac{59}{540} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{59}{270}x+\frac{3481}{291600}=\frac{230281}{291600}
Add \frac{7}{9} to \frac{3481}{291600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{59}{540}\right)^{2}=\frac{230281}{291600}
Factor x^{2}+\frac{59}{270}x+\frac{3481}{291600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{59}{540}\right)^{2}}=\sqrt{\frac{230281}{291600}}
Take the square root of both sides of the equation.
x+\frac{59}{540}=\frac{\sqrt{230281}}{540} x+\frac{59}{540}=-\frac{\sqrt{230281}}{540}
Simplify.
x=\frac{\sqrt{230281}-59}{540} x=\frac{-\sqrt{230281}-59}{540}
Subtract \frac{59}{540} from both sides of the equation.