Solve for x
x = \frac{\sqrt{1561} - 11}{18} \approx 1.583860696
x=\frac{-\sqrt{1561}-11}{18}\approx -2.806082918
Graph
Share
Copied to clipboard
27x^{2}+33x-120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{33^{2}-4\times 27\left(-120\right)}}{2\times 27}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 27 for a, 33 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\times 27\left(-120\right)}}{2\times 27}
Square 33.
x=\frac{-33±\sqrt{1089-108\left(-120\right)}}{2\times 27}
Multiply -4 times 27.
x=\frac{-33±\sqrt{1089+12960}}{2\times 27}
Multiply -108 times -120.
x=\frac{-33±\sqrt{14049}}{2\times 27}
Add 1089 to 12960.
x=\frac{-33±3\sqrt{1561}}{2\times 27}
Take the square root of 14049.
x=\frac{-33±3\sqrt{1561}}{54}
Multiply 2 times 27.
x=\frac{3\sqrt{1561}-33}{54}
Now solve the equation x=\frac{-33±3\sqrt{1561}}{54} when ± is plus. Add -33 to 3\sqrt{1561}.
x=\frac{\sqrt{1561}-11}{18}
Divide -33+3\sqrt{1561} by 54.
x=\frac{-3\sqrt{1561}-33}{54}
Now solve the equation x=\frac{-33±3\sqrt{1561}}{54} when ± is minus. Subtract 3\sqrt{1561} from -33.
x=\frac{-\sqrt{1561}-11}{18}
Divide -33-3\sqrt{1561} by 54.
x=\frac{\sqrt{1561}-11}{18} x=\frac{-\sqrt{1561}-11}{18}
The equation is now solved.
27x^{2}+33x-120=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
27x^{2}+33x-120-\left(-120\right)=-\left(-120\right)
Add 120 to both sides of the equation.
27x^{2}+33x=-\left(-120\right)
Subtracting -120 from itself leaves 0.
27x^{2}+33x=120
Subtract -120 from 0.
\frac{27x^{2}+33x}{27}=\frac{120}{27}
Divide both sides by 27.
x^{2}+\frac{33}{27}x=\frac{120}{27}
Dividing by 27 undoes the multiplication by 27.
x^{2}+\frac{11}{9}x=\frac{120}{27}
Reduce the fraction \frac{33}{27} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{11}{9}x=\frac{40}{9}
Reduce the fraction \frac{120}{27} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{11}{9}x+\left(\frac{11}{18}\right)^{2}=\frac{40}{9}+\left(\frac{11}{18}\right)^{2}
Divide \frac{11}{9}, the coefficient of the x term, by 2 to get \frac{11}{18}. Then add the square of \frac{11}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{40}{9}+\frac{121}{324}
Square \frac{11}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{1561}{324}
Add \frac{40}{9} to \frac{121}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{18}\right)^{2}=\frac{1561}{324}
Factor x^{2}+\frac{11}{9}x+\frac{121}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{18}\right)^{2}}=\sqrt{\frac{1561}{324}}
Take the square root of both sides of the equation.
x+\frac{11}{18}=\frac{\sqrt{1561}}{18} x+\frac{11}{18}=-\frac{\sqrt{1561}}{18}
Simplify.
x=\frac{\sqrt{1561}-11}{18} x=\frac{-\sqrt{1561}-11}{18}
Subtract \frac{11}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}