Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

27x^{2}+2160x-32400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2160±\sqrt{2160^{2}-4\times 27\left(-32400\right)}}{2\times 27}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 27 for a, 2160 for b, and -32400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2160±\sqrt{4665600-4\times 27\left(-32400\right)}}{2\times 27}
Square 2160.
x=\frac{-2160±\sqrt{4665600-108\left(-32400\right)}}{2\times 27}
Multiply -4 times 27.
x=\frac{-2160±\sqrt{4665600+3499200}}{2\times 27}
Multiply -108 times -32400.
x=\frac{-2160±\sqrt{8164800}}{2\times 27}
Add 4665600 to 3499200.
x=\frac{-2160±1080\sqrt{7}}{2\times 27}
Take the square root of 8164800.
x=\frac{-2160±1080\sqrt{7}}{54}
Multiply 2 times 27.
x=\frac{1080\sqrt{7}-2160}{54}
Now solve the equation x=\frac{-2160±1080\sqrt{7}}{54} when ± is plus. Add -2160 to 1080\sqrt{7}.
x=20\sqrt{7}-40
Divide -2160+1080\sqrt{7} by 54.
x=\frac{-1080\sqrt{7}-2160}{54}
Now solve the equation x=\frac{-2160±1080\sqrt{7}}{54} when ± is minus. Subtract 1080\sqrt{7} from -2160.
x=-20\sqrt{7}-40
Divide -2160-1080\sqrt{7} by 54.
x=20\sqrt{7}-40 x=-20\sqrt{7}-40
The equation is now solved.
27x^{2}+2160x-32400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
27x^{2}+2160x-32400-\left(-32400\right)=-\left(-32400\right)
Add 32400 to both sides of the equation.
27x^{2}+2160x=-\left(-32400\right)
Subtracting -32400 from itself leaves 0.
27x^{2}+2160x=32400
Subtract -32400 from 0.
\frac{27x^{2}+2160x}{27}=\frac{32400}{27}
Divide both sides by 27.
x^{2}+\frac{2160}{27}x=\frac{32400}{27}
Dividing by 27 undoes the multiplication by 27.
x^{2}+80x=\frac{32400}{27}
Divide 2160 by 27.
x^{2}+80x=1200
Divide 32400 by 27.
x^{2}+80x+40^{2}=1200+40^{2}
Divide 80, the coefficient of the x term, by 2 to get 40. Then add the square of 40 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+80x+1600=1200+1600
Square 40.
x^{2}+80x+1600=2800
Add 1200 to 1600.
\left(x+40\right)^{2}=2800
Factor x^{2}+80x+1600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+40\right)^{2}}=\sqrt{2800}
Take the square root of both sides of the equation.
x+40=20\sqrt{7} x+40=-20\sqrt{7}
Simplify.
x=20\sqrt{7}-40 x=-20\sqrt{7}-40
Subtract 40 from both sides of the equation.